Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

13x-36-x^{2}=3x
Use the distributive property to multiply 9-x by x-4 and combine like terms.
13x-36-x^{2}-3x=0
Subtract 3x from both sides.
10x-36-x^{2}=0
Combine 13x and -3x to get 10x.
-x^{2}+10x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 10 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Square 10.
x=\frac{-10±\sqrt{100+4\left(-36\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-10±\sqrt{100-144}}{2\left(-1\right)}
Multiply 4 times -36.
x=\frac{-10±\sqrt{-44}}{2\left(-1\right)}
Add 100 to -144.
x=\frac{-10±2\sqrt{11}i}{2\left(-1\right)}
Take the square root of -44.
x=\frac{-10±2\sqrt{11}i}{-2}
Multiply 2 times -1.
x=\frac{-10+2\sqrt{11}i}{-2}
Now solve the equation x=\frac{-10±2\sqrt{11}i}{-2} when ± is plus. Add -10 to 2i\sqrt{11}.
x=-\sqrt{11}i+5
Divide -10+2i\sqrt{11} by -2.
x=\frac{-2\sqrt{11}i-10}{-2}
Now solve the equation x=\frac{-10±2\sqrt{11}i}{-2} when ± is minus. Subtract 2i\sqrt{11} from -10.
x=5+\sqrt{11}i
Divide -10-2i\sqrt{11} by -2.
x=-\sqrt{11}i+5 x=5+\sqrt{11}i
The equation is now solved.
13x-36-x^{2}=3x
Use the distributive property to multiply 9-x by x-4 and combine like terms.
13x-36-x^{2}-3x=0
Subtract 3x from both sides.
10x-36-x^{2}=0
Combine 13x and -3x to get 10x.
10x-x^{2}=36
Add 36 to both sides. Anything plus zero gives itself.
-x^{2}+10x=36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+10x}{-1}=\frac{36}{-1}
Divide both sides by -1.
x^{2}+\frac{10}{-1}x=\frac{36}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-10x=\frac{36}{-1}
Divide 10 by -1.
x^{2}-10x=-36
Divide 36 by -1.
x^{2}-10x+\left(-5\right)^{2}=-36+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-36+25
Square -5.
x^{2}-10x+25=-11
Add -36 to 25.
\left(x-5\right)^{2}=-11
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-11}
Take the square root of both sides of the equation.
x-5=\sqrt{11}i x-5=-\sqrt{11}i
Simplify.
x=5+\sqrt{11}i x=-\sqrt{11}i+5
Add 5 to both sides of the equation.