Solve for x
x = -\frac{175}{36} = -4\frac{31}{36} \approx -4.861111111
Graph
Share
Copied to clipboard
\left(\frac{9}{2}-x\right)^{2}=x^{2}+\left(9-1\right)^{2}
Subtract \frac{9}{2} from 9 to get \frac{9}{2}.
\frac{81}{4}-9x+x^{2}=x^{2}+\left(9-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{9}{2}-x\right)^{2}.
\frac{81}{4}-9x+x^{2}=x^{2}+8^{2}
Subtract 1 from 9 to get 8.
\frac{81}{4}-9x+x^{2}=x^{2}+64
Calculate 8 to the power of 2 and get 64.
\frac{81}{4}-9x+x^{2}-x^{2}=64
Subtract x^{2} from both sides.
\frac{81}{4}-9x=64
Combine x^{2} and -x^{2} to get 0.
-9x=64-\frac{81}{4}
Subtract \frac{81}{4} from both sides.
-9x=\frac{175}{4}
Subtract \frac{81}{4} from 64 to get \frac{175}{4}.
x=\frac{\frac{175}{4}}{-9}
Divide both sides by -9.
x=\frac{175}{4\left(-9\right)}
Express \frac{\frac{175}{4}}{-9} as a single fraction.
x=\frac{175}{-36}
Multiply 4 and -9 to get -36.
x=-\frac{175}{36}
Fraction \frac{175}{-36} can be rewritten as -\frac{175}{36} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}