Solve for x
x=\frac{\sqrt{601}+4}{45}\approx 0.633673363
x=\frac{4-\sqrt{601}}{45}\approx -0.455895585
Graph
Share
Copied to clipboard
45x^{2}-8x-13=0
Multiply 9 and 5 to get 45.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 45\left(-13\right)}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, -8 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 45\left(-13\right)}}{2\times 45}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-180\left(-13\right)}}{2\times 45}
Multiply -4 times 45.
x=\frac{-\left(-8\right)±\sqrt{64+2340}}{2\times 45}
Multiply -180 times -13.
x=\frac{-\left(-8\right)±\sqrt{2404}}{2\times 45}
Add 64 to 2340.
x=\frac{-\left(-8\right)±2\sqrt{601}}{2\times 45}
Take the square root of 2404.
x=\frac{8±2\sqrt{601}}{2\times 45}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{601}}{90}
Multiply 2 times 45.
x=\frac{2\sqrt{601}+8}{90}
Now solve the equation x=\frac{8±2\sqrt{601}}{90} when ± is plus. Add 8 to 2\sqrt{601}.
x=\frac{\sqrt{601}+4}{45}
Divide 8+2\sqrt{601} by 90.
x=\frac{8-2\sqrt{601}}{90}
Now solve the equation x=\frac{8±2\sqrt{601}}{90} when ± is minus. Subtract 2\sqrt{601} from 8.
x=\frac{4-\sqrt{601}}{45}
Divide 8-2\sqrt{601} by 90.
x=\frac{\sqrt{601}+4}{45} x=\frac{4-\sqrt{601}}{45}
The equation is now solved.
45x^{2}-8x-13=0
Multiply 9 and 5 to get 45.
45x^{2}-8x=13
Add 13 to both sides. Anything plus zero gives itself.
\frac{45x^{2}-8x}{45}=\frac{13}{45}
Divide both sides by 45.
x^{2}-\frac{8}{45}x=\frac{13}{45}
Dividing by 45 undoes the multiplication by 45.
x^{2}-\frac{8}{45}x+\left(-\frac{4}{45}\right)^{2}=\frac{13}{45}+\left(-\frac{4}{45}\right)^{2}
Divide -\frac{8}{45}, the coefficient of the x term, by 2 to get -\frac{4}{45}. Then add the square of -\frac{4}{45} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{45}x+\frac{16}{2025}=\frac{13}{45}+\frac{16}{2025}
Square -\frac{4}{45} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{45}x+\frac{16}{2025}=\frac{601}{2025}
Add \frac{13}{45} to \frac{16}{2025} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{45}\right)^{2}=\frac{601}{2025}
Factor x^{2}-\frac{8}{45}x+\frac{16}{2025}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{45}\right)^{2}}=\sqrt{\frac{601}{2025}}
Take the square root of both sides of the equation.
x-\frac{4}{45}=\frac{\sqrt{601}}{45} x-\frac{4}{45}=-\frac{\sqrt{601}}{45}
Simplify.
x=\frac{\sqrt{601}+4}{45} x=\frac{4-\sqrt{601}}{45}
Add \frac{4}{45} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}