Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

640-192x+8x^{2}=1080
Use the distributive property to multiply 80-4x by 8-2x and combine like terms.
640-192x+8x^{2}-1080=0
Subtract 1080 from both sides.
-440-192x+8x^{2}=0
Subtract 1080 from 640 to get -440.
8x^{2}-192x-440=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-192\right)±\sqrt{\left(-192\right)^{2}-4\times 8\left(-440\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -192 for b, and -440 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-192\right)±\sqrt{36864-4\times 8\left(-440\right)}}{2\times 8}
Square -192.
x=\frac{-\left(-192\right)±\sqrt{36864-32\left(-440\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-192\right)±\sqrt{36864+14080}}{2\times 8}
Multiply -32 times -440.
x=\frac{-\left(-192\right)±\sqrt{50944}}{2\times 8}
Add 36864 to 14080.
x=\frac{-\left(-192\right)±16\sqrt{199}}{2\times 8}
Take the square root of 50944.
x=\frac{192±16\sqrt{199}}{2\times 8}
The opposite of -192 is 192.
x=\frac{192±16\sqrt{199}}{16}
Multiply 2 times 8.
x=\frac{16\sqrt{199}+192}{16}
Now solve the equation x=\frac{192±16\sqrt{199}}{16} when ± is plus. Add 192 to 16\sqrt{199}.
x=\sqrt{199}+12
Divide 192+16\sqrt{199} by 16.
x=\frac{192-16\sqrt{199}}{16}
Now solve the equation x=\frac{192±16\sqrt{199}}{16} when ± is minus. Subtract 16\sqrt{199} from 192.
x=12-\sqrt{199}
Divide 192-16\sqrt{199} by 16.
x=\sqrt{199}+12 x=12-\sqrt{199}
The equation is now solved.
640-192x+8x^{2}=1080
Use the distributive property to multiply 80-4x by 8-2x and combine like terms.
-192x+8x^{2}=1080-640
Subtract 640 from both sides.
-192x+8x^{2}=440
Subtract 640 from 1080 to get 440.
8x^{2}-192x=440
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}-192x}{8}=\frac{440}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{192}{8}\right)x=\frac{440}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-24x=\frac{440}{8}
Divide -192 by 8.
x^{2}-24x=55
Divide 440 by 8.
x^{2}-24x+\left(-12\right)^{2}=55+\left(-12\right)^{2}
Divide -24, the coefficient of the x term, by 2 to get -12. Then add the square of -12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-24x+144=55+144
Square -12.
x^{2}-24x+144=199
Add 55 to 144.
\left(x-12\right)^{2}=199
Factor x^{2}-24x+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-12\right)^{2}}=\sqrt{199}
Take the square root of both sides of the equation.
x-12=\sqrt{199} x-12=-\sqrt{199}
Simplify.
x=\sqrt{199}+12 x=12-\sqrt{199}
Add 12 to both sides of the equation.