Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

128x+640-8x^{2}=18800
Use the distributive property to multiply 80-4x by 2x+8 and combine like terms.
128x+640-8x^{2}-18800=0
Subtract 18800 from both sides.
128x-18160-8x^{2}=0
Subtract 18800 from 640 to get -18160.
-8x^{2}+128x-18160=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-128±\sqrt{128^{2}-4\left(-8\right)\left(-18160\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 128 for b, and -18160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-128±\sqrt{16384-4\left(-8\right)\left(-18160\right)}}{2\left(-8\right)}
Square 128.
x=\frac{-128±\sqrt{16384+32\left(-18160\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-128±\sqrt{16384-581120}}{2\left(-8\right)}
Multiply 32 times -18160.
x=\frac{-128±\sqrt{-564736}}{2\left(-8\right)}
Add 16384 to -581120.
x=\frac{-128±16\sqrt{2206}i}{2\left(-8\right)}
Take the square root of -564736.
x=\frac{-128±16\sqrt{2206}i}{-16}
Multiply 2 times -8.
x=\frac{-128+16\sqrt{2206}i}{-16}
Now solve the equation x=\frac{-128±16\sqrt{2206}i}{-16} when ± is plus. Add -128 to 16i\sqrt{2206}.
x=-\sqrt{2206}i+8
Divide -128+16i\sqrt{2206} by -16.
x=\frac{-16\sqrt{2206}i-128}{-16}
Now solve the equation x=\frac{-128±16\sqrt{2206}i}{-16} when ± is minus. Subtract 16i\sqrt{2206} from -128.
x=8+\sqrt{2206}i
Divide -128-16i\sqrt{2206} by -16.
x=-\sqrt{2206}i+8 x=8+\sqrt{2206}i
The equation is now solved.
128x+640-8x^{2}=18800
Use the distributive property to multiply 80-4x by 2x+8 and combine like terms.
128x-8x^{2}=18800-640
Subtract 640 from both sides.
128x-8x^{2}=18160
Subtract 640 from 18800 to get 18160.
-8x^{2}+128x=18160
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+128x}{-8}=\frac{18160}{-8}
Divide both sides by -8.
x^{2}+\frac{128}{-8}x=\frac{18160}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-16x=\frac{18160}{-8}
Divide 128 by -8.
x^{2}-16x=-2270
Divide 18160 by -8.
x^{2}-16x+\left(-8\right)^{2}=-2270+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-2270+64
Square -8.
x^{2}-16x+64=-2206
Add -2270 to 64.
\left(x-8\right)^{2}=-2206
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{-2206}
Take the square root of both sides of the equation.
x-8=\sqrt{2206}i x-8=-\sqrt{2206}i
Simplify.
x=8+\sqrt{2206}i x=-\sqrt{2206}i+8
Add 8 to both sides of the equation.