Solve for x
x=\frac{1}{8}=0.125
x=-\frac{1}{8}=-0.125
Graph
Share
Copied to clipboard
8^{2}x^{2}=1
Expand \left(8x\right)^{2}.
64x^{2}=1
Calculate 8 to the power of 2 and get 64.
64x^{2}-1=0
Subtract 1 from both sides.
\left(8x-1\right)\left(8x+1\right)=0
Consider 64x^{2}-1. Rewrite 64x^{2}-1 as \left(8x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{8} x=-\frac{1}{8}
To find equation solutions, solve 8x-1=0 and 8x+1=0.
8^{2}x^{2}=1
Expand \left(8x\right)^{2}.
64x^{2}=1
Calculate 8 to the power of 2 and get 64.
x^{2}=\frac{1}{64}
Divide both sides by 64.
x=\frac{1}{8} x=-\frac{1}{8}
Take the square root of both sides of the equation.
8^{2}x^{2}=1
Expand \left(8x\right)^{2}.
64x^{2}=1
Calculate 8 to the power of 2 and get 64.
64x^{2}-1=0
Subtract 1 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 64\left(-1\right)}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 64\left(-1\right)}}{2\times 64}
Square 0.
x=\frac{0±\sqrt{-256\left(-1\right)}}{2\times 64}
Multiply -4 times 64.
x=\frac{0±\sqrt{256}}{2\times 64}
Multiply -256 times -1.
x=\frac{0±16}{2\times 64}
Take the square root of 256.
x=\frac{0±16}{128}
Multiply 2 times 64.
x=\frac{1}{8}
Now solve the equation x=\frac{0±16}{128} when ± is plus. Reduce the fraction \frac{16}{128} to lowest terms by extracting and canceling out 16.
x=-\frac{1}{8}
Now solve the equation x=\frac{0±16}{128} when ± is minus. Reduce the fraction \frac{-16}{128} to lowest terms by extracting and canceling out 16.
x=\frac{1}{8} x=-\frac{1}{8}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}