Evaluate
\frac{4}{xy}
Differentiate w.r.t. x
-\frac{4}{yx^{2}}
Share
Copied to clipboard
8^{1}x^{4}y^{-3}\times \left(\frac{1}{2}\right)^{1}x^{-5}y^{2}
Use the rules of exponents to simplify the expression.
8^{1}\times \left(\frac{1}{2}\right)^{1}x^{4}x^{-5}y^{-3}y^{2}
Use the Commutative Property of Multiplication.
8^{1}\times \left(\frac{1}{2}\right)^{1}x^{4-5}y^{-3+2}
To multiply powers of the same base, add their exponents.
8^{1}\times \left(\frac{1}{2}\right)^{1}\times \frac{1}{x}y^{-3+2}
Add the exponents 4 and -5.
8^{1}\times \left(\frac{1}{2}\right)^{1}\times \frac{1}{x}\times \frac{1}{y}
Add the exponents -3 and 2.
4\times \frac{1}{x}\times \frac{1}{y}
Multiply 8 times \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}