Evaluate
-4x^{2}
Expand
-4x^{2}
Graph
Share
Copied to clipboard
\frac{2x\left(2x-1\right)\left(2x+1\right)}{-2x}-1
Factor the expressions that are not already factored in \frac{8x^{3}-2x}{-2x}.
\frac{\left(2x-1\right)\left(2x+1\right)}{-1}-1
Cancel out 2x in both numerator and denominator.
-\left(2x-1\right)\left(2x+1\right)-1
Anything divided by -1 gives its opposite.
-\left(\left(2x\right)^{2}-1\right)-1
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-\left(2^{2}x^{2}-1\right)-1
Expand \left(2x\right)^{2}.
-\left(4x^{2}-1\right)-1
Calculate 2 to the power of 2 and get 4.
-4x^{2}+1-1
To find the opposite of 4x^{2}-1, find the opposite of each term.
-4x^{2}
Subtract 1 from 1 to get 0.
\frac{2x\left(2x-1\right)\left(2x+1\right)}{-2x}-1
Factor the expressions that are not already factored in \frac{8x^{3}-2x}{-2x}.
\frac{\left(2x-1\right)\left(2x+1\right)}{-1}-1
Cancel out 2x in both numerator and denominator.
-\left(2x-1\right)\left(2x+1\right)-1
Anything divided by -1 gives its opposite.
-\left(\left(2x\right)^{2}-1\right)-1
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-\left(2^{2}x^{2}-1\right)-1
Expand \left(2x\right)^{2}.
-\left(4x^{2}-1\right)-1
Calculate 2 to the power of 2 and get 4.
-4x^{2}+1-1
To find the opposite of 4x^{2}-1, find the opposite of each term.
-4x^{2}
Subtract 1 from 1 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}