Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

17x^{2}-5x+2+4x-3
Combine 8x^{2} and 9x^{2} to get 17x^{2}.
17x^{2}-x+2-3
Combine -5x and 4x to get -x.
17x^{2}-x-1
Subtract 3 from 2 to get -1.
factor(17x^{2}-5x+2+4x-3)
Combine 8x^{2} and 9x^{2} to get 17x^{2}.
factor(17x^{2}-x+2-3)
Combine -5x and 4x to get -x.
factor(17x^{2}-x-1)
Subtract 3 from 2 to get -1.
17x^{2}-x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 17\left(-1\right)}}{2\times 17}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-68\left(-1\right)}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-1\right)±\sqrt{1+68}}{2\times 17}
Multiply -68 times -1.
x=\frac{-\left(-1\right)±\sqrt{69}}{2\times 17}
Add 1 to 68.
x=\frac{1±\sqrt{69}}{2\times 17}
The opposite of -1 is 1.
x=\frac{1±\sqrt{69}}{34}
Multiply 2 times 17.
x=\frac{\sqrt{69}+1}{34}
Now solve the equation x=\frac{1±\sqrt{69}}{34} when ± is plus. Add 1 to \sqrt{69}.
x=\frac{1-\sqrt{69}}{34}
Now solve the equation x=\frac{1±\sqrt{69}}{34} when ± is minus. Subtract \sqrt{69} from 1.
17x^{2}-x-1=17\left(x-\frac{\sqrt{69}+1}{34}\right)\left(x-\frac{1-\sqrt{69}}{34}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{69}}{34} for x_{1} and \frac{1-\sqrt{69}}{34} for x_{2}.