Solve for x (complex solution)
x=-\sqrt{14}i\approx -0-3.741657387i
x=\sqrt{14}i\approx 3.741657387i
Graph
Share
Copied to clipboard
8-2x^{2}=36
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}=36-8
Subtract 8 from both sides.
-2x^{2}=28
Subtract 8 from 36 to get 28.
x^{2}=\frac{28}{-2}
Divide both sides by -2.
x^{2}=-14
Divide 28 by -2 to get -14.
x=\sqrt{14}i x=-\sqrt{14}i
The equation is now solved.
8-2x^{2}=36
Combine -x^{2} and -x^{2} to get -2x^{2}.
8-2x^{2}-36=0
Subtract 36 from both sides.
-28-2x^{2}=0
Subtract 36 from 8 to get -28.
-2x^{2}-28=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\left(-28\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\left(-28\right)}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\left(-28\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{-224}}{2\left(-2\right)}
Multiply 8 times -28.
x=\frac{0±4\sqrt{14}i}{2\left(-2\right)}
Take the square root of -224.
x=\frac{0±4\sqrt{14}i}{-4}
Multiply 2 times -2.
x=-\sqrt{14}i
Now solve the equation x=\frac{0±4\sqrt{14}i}{-4} when ± is plus.
x=\sqrt{14}i
Now solve the equation x=\frac{0±4\sqrt{14}i}{-4} when ± is minus.
x=-\sqrt{14}i x=\sqrt{14}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}