Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-b^{2}+2b+8
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
p+q=2 pq=-8=-8
Factor the expression by grouping. First, the expression needs to be rewritten as -b^{2}+pb+qb+8. To find p and q, set up a system to be solved.
-1,8 -2,4
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
p=4 q=-2
The solution is the pair that gives sum 2.
\left(-b^{2}+4b\right)+\left(-2b+8\right)
Rewrite -b^{2}+2b+8 as \left(-b^{2}+4b\right)+\left(-2b+8\right).
-b\left(b-4\right)-2\left(b-4\right)
Factor out -b in the first and -2 in the second group.
\left(b-4\right)\left(-b-2\right)
Factor out common term b-4 by using distributive property.
-b^{2}+2b+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-2±\sqrt{4-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square 2.
b=\frac{-2±\sqrt{4+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
b=\frac{-2±\sqrt{4+32}}{2\left(-1\right)}
Multiply 4 times 8.
b=\frac{-2±\sqrt{36}}{2\left(-1\right)}
Add 4 to 32.
b=\frac{-2±6}{2\left(-1\right)}
Take the square root of 36.
b=\frac{-2±6}{-2}
Multiply 2 times -1.
b=\frac{4}{-2}
Now solve the equation b=\frac{-2±6}{-2} when ± is plus. Add -2 to 6.
b=-2
Divide 4 by -2.
b=-\frac{8}{-2}
Now solve the equation b=\frac{-2±6}{-2} when ± is minus. Subtract 6 from -2.
b=4
Divide -8 by -2.
-b^{2}+2b+8=-\left(b-\left(-2\right)\right)\left(b-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and 4 for x_{2}.
-b^{2}+2b+8=-\left(b+2\right)\left(b-4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.