Solve for t
t = \frac{25}{16} = 1\frac{9}{16} = 1.5625
Share
Copied to clipboard
64-64t+16t^{2}+6^{2}=\left(4t\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-4t\right)^{2}.
64-64t+16t^{2}+36=\left(4t\right)^{2}
Calculate 6 to the power of 2 and get 36.
100-64t+16t^{2}=\left(4t\right)^{2}
Add 64 and 36 to get 100.
100-64t+16t^{2}=4^{2}t^{2}
Expand \left(4t\right)^{2}.
100-64t+16t^{2}=16t^{2}
Calculate 4 to the power of 2 and get 16.
100-64t+16t^{2}-16t^{2}=0
Subtract 16t^{2} from both sides.
100-64t=0
Combine 16t^{2} and -16t^{2} to get 0.
-64t=-100
Subtract 100 from both sides. Anything subtracted from zero gives its negation.
t=\frac{-100}{-64}
Divide both sides by -64.
t=\frac{25}{16}
Reduce the fraction \frac{-100}{-64} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}