Evaluate
63\sqrt{2}+147\approx 236.09545443
Factor
21 {(3 \sqrt{2} + 7)} = 236.09545443
Share
Copied to clipboard
8\left(9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(3-\sqrt{2}\right)-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{2}\right)^{2}.
8\left(9+6\sqrt{2}+2\right)\left(3-\sqrt{2}\right)-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
The square of \sqrt{2} is 2.
8\left(11+6\sqrt{2}\right)\left(3-\sqrt{2}\right)-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
Add 9 and 2 to get 11.
\left(88+48\sqrt{2}\right)\left(3-\sqrt{2}\right)-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
Use the distributive property to multiply 8 by 11+6\sqrt{2}.
264+56\sqrt{2}-48\left(\sqrt{2}\right)^{2}-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
Use the distributive property to multiply 88+48\sqrt{2} by 3-\sqrt{2} and combine like terms.
264+56\sqrt{2}-48\times 2-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
The square of \sqrt{2} is 2.
264+56\sqrt{2}-96-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
Multiply -48 and 2 to get -96.
168+56\sqrt{2}-\left(3-\sqrt{2}\right)^{2}\left(3+\sqrt{2}\right)
Subtract 96 from 264 to get 168.
168+56\sqrt{2}-\left(9-6\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(3+\sqrt{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{2}\right)^{2}.
168+56\sqrt{2}-\left(9-6\sqrt{2}+2\right)\left(3+\sqrt{2}\right)
The square of \sqrt{2} is 2.
168+56\sqrt{2}-\left(11-6\sqrt{2}\right)\left(3+\sqrt{2}\right)
Add 9 and 2 to get 11.
168+56\sqrt{2}-\left(33-7\sqrt{2}-6\left(\sqrt{2}\right)^{2}\right)
Use the distributive property to multiply 11-6\sqrt{2} by 3+\sqrt{2} and combine like terms.
168+56\sqrt{2}-\left(33-7\sqrt{2}-6\times 2\right)
The square of \sqrt{2} is 2.
168+56\sqrt{2}-\left(33-7\sqrt{2}-12\right)
Multiply -6 and 2 to get -12.
168+56\sqrt{2}-\left(21-7\sqrt{2}\right)
Subtract 12 from 33 to get 21.
168+56\sqrt{2}-21+7\sqrt{2}
To find the opposite of 21-7\sqrt{2}, find the opposite of each term.
147+56\sqrt{2}+7\sqrt{2}
Subtract 21 from 168 to get 147.
147+63\sqrt{2}
Combine 56\sqrt{2} and 7\sqrt{2} to get 63\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}