Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5}{x-2}-x-2}
Express 8\times \frac{2x-6}{x-2} as a single fraction.
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5}{x-2}+\frac{\left(-x-2\right)\left(x-2\right)}{x-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-2 times \frac{x-2}{x-2}.
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5+\left(-x-2\right)\left(x-2\right)}{x-2}}
Since \frac{5}{x-2} and \frac{\left(-x-2\right)\left(x-2\right)}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5-x^{2}+2x-2x+4}{x-2}}
Do the multiplications in 5+\left(-x-2\right)\left(x-2\right).
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{9-x^{2}}{x-2}}
Combine like terms in 5-x^{2}+2x-2x+4.
\frac{8\left(2x-6\right)\left(x-2\right)}{\left(x-2\right)\left(9-x^{2}\right)}
Divide \frac{8\left(2x-6\right)}{x-2} by \frac{9-x^{2}}{x-2} by multiplying \frac{8\left(2x-6\right)}{x-2} by the reciprocal of \frac{9-x^{2}}{x-2}.
\frac{8\left(2x-6\right)}{-x^{2}+9}
Cancel out x-2 in both numerator and denominator.
\frac{2\times 8\left(x-3\right)}{\left(x-3\right)\left(-x-3\right)}
Factor the expressions that are not already factored.
\frac{2\times 8}{-x-3}
Cancel out x-3 in both numerator and denominator.
\frac{16}{-x-3}
Expand the expression.
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5}{x-2}-x-2}
Express 8\times \frac{2x-6}{x-2} as a single fraction.
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5}{x-2}+\frac{\left(-x-2\right)\left(x-2\right)}{x-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-2 times \frac{x-2}{x-2}.
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5+\left(-x-2\right)\left(x-2\right)}{x-2}}
Since \frac{5}{x-2} and \frac{\left(-x-2\right)\left(x-2\right)}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{5-x^{2}+2x-2x+4}{x-2}}
Do the multiplications in 5+\left(-x-2\right)\left(x-2\right).
\frac{\frac{8\left(2x-6\right)}{x-2}}{\frac{9-x^{2}}{x-2}}
Combine like terms in 5-x^{2}+2x-2x+4.
\frac{8\left(2x-6\right)\left(x-2\right)}{\left(x-2\right)\left(9-x^{2}\right)}
Divide \frac{8\left(2x-6\right)}{x-2} by \frac{9-x^{2}}{x-2} by multiplying \frac{8\left(2x-6\right)}{x-2} by the reciprocal of \frac{9-x^{2}}{x-2}.
\frac{8\left(2x-6\right)}{-x^{2}+9}
Cancel out x-2 in both numerator and denominator.
\frac{2\times 8\left(x-3\right)}{\left(x-3\right)\left(-x-3\right)}
Factor the expressions that are not already factored.
\frac{2\times 8}{-x-3}
Cancel out x-3 in both numerator and denominator.
\frac{16}{-x-3}
Expand the expression.