Solve for x
x=\frac{16}{49}\approx 0.326530612
Graph
Share
Copied to clipboard
8^{2}\left(\sqrt{x}\right)^{2}=\left(4+\sqrt{x}\right)^{2}
Expand \left(8\sqrt{x}\right)^{2}.
64\left(\sqrt{x}\right)^{2}=\left(4+\sqrt{x}\right)^{2}
Calculate 8 to the power of 2 and get 64.
64x=\left(4+\sqrt{x}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
64x=16+8\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\sqrt{x}\right)^{2}.
64x=16+8\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
64x-8\sqrt{x}=16+x
Subtract 8\sqrt{x} from both sides.
64x-8\sqrt{x}-x=16
Subtract x from both sides.
63x-8\sqrt{x}=16
Combine 64x and -x to get 63x.
-8\sqrt{x}=16-63x
Subtract 63x from both sides of the equation.
\left(-8\sqrt{x}\right)^{2}=\left(-63x+16\right)^{2}
Square both sides of the equation.
\left(-8\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-63x+16\right)^{2}
Expand \left(-8\sqrt{x}\right)^{2}.
64\left(\sqrt{x}\right)^{2}=\left(-63x+16\right)^{2}
Calculate -8 to the power of 2 and get 64.
64x=\left(-63x+16\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
64x=3969x^{2}-2016x+256
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-63x+16\right)^{2}.
64x-3969x^{2}=-2016x+256
Subtract 3969x^{2} from both sides.
64x-3969x^{2}+2016x=256
Add 2016x to both sides.
2080x-3969x^{2}=256
Combine 64x and 2016x to get 2080x.
2080x-3969x^{2}-256=0
Subtract 256 from both sides.
-3969x^{2}+2080x-256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2080±\sqrt{2080^{2}-4\left(-3969\right)\left(-256\right)}}{2\left(-3969\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3969 for a, 2080 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2080±\sqrt{4326400-4\left(-3969\right)\left(-256\right)}}{2\left(-3969\right)}
Square 2080.
x=\frac{-2080±\sqrt{4326400+15876\left(-256\right)}}{2\left(-3969\right)}
Multiply -4 times -3969.
x=\frac{-2080±\sqrt{4326400-4064256}}{2\left(-3969\right)}
Multiply 15876 times -256.
x=\frac{-2080±\sqrt{262144}}{2\left(-3969\right)}
Add 4326400 to -4064256.
x=\frac{-2080±512}{2\left(-3969\right)}
Take the square root of 262144.
x=\frac{-2080±512}{-7938}
Multiply 2 times -3969.
x=-\frac{1568}{-7938}
Now solve the equation x=\frac{-2080±512}{-7938} when ± is plus. Add -2080 to 512.
x=\frac{16}{81}
Reduce the fraction \frac{-1568}{-7938} to lowest terms by extracting and canceling out 98.
x=-\frac{2592}{-7938}
Now solve the equation x=\frac{-2080±512}{-7938} when ± is minus. Subtract 512 from -2080.
x=\frac{16}{49}
Reduce the fraction \frac{-2592}{-7938} to lowest terms by extracting and canceling out 162.
x=\frac{16}{81} x=\frac{16}{49}
The equation is now solved.
\left(8\sqrt{\frac{16}{81}}\right)^{2}=\left(4+\sqrt{\frac{16}{81}}\right)^{2}
Substitute \frac{16}{81} for x in the equation \left(8\sqrt{x}\right)^{2}=\left(4+\sqrt{x}\right)^{2}.
\frac{1024}{81}=\frac{1600}{81}
Simplify. The value x=\frac{16}{81} does not satisfy the equation.
\left(8\sqrt{\frac{16}{49}}\right)^{2}=\left(4+\sqrt{\frac{16}{49}}\right)^{2}
Substitute \frac{16}{49} for x in the equation \left(8\sqrt{x}\right)^{2}=\left(4+\sqrt{x}\right)^{2}.
\frac{1024}{49}=\frac{1024}{49}
Simplify. The value x=\frac{16}{49} satisfies the equation.
x=\frac{16}{49}
Equation -8\sqrt{x}=16-63x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}