Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

64\left(\sqrt{3}\right)^{2}+16\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8\sqrt{3}+\sqrt{7}\right)^{2}.
64\times 3+16\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}
The square of \sqrt{3} is 3.
192+16\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}
Multiply 64 and 3 to get 192.
192+16\sqrt{21}+\left(\sqrt{7}\right)^{2}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
192+16\sqrt{21}+7
The square of \sqrt{7} is 7.
199+16\sqrt{21}
Add 192 and 7 to get 199.
64\left(\sqrt{3}\right)^{2}+16\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8\sqrt{3}+\sqrt{7}\right)^{2}.
64\times 3+16\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}
The square of \sqrt{3} is 3.
192+16\sqrt{3}\sqrt{7}+\left(\sqrt{7}\right)^{2}
Multiply 64 and 3 to get 192.
192+16\sqrt{21}+\left(\sqrt{7}\right)^{2}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
192+16\sqrt{21}+7
The square of \sqrt{7} is 7.
199+16\sqrt{21}
Add 192 and 7 to get 199.