Evaluate
4-2\sqrt{3}\approx 0.535898385
Share
Copied to clipboard
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(\sqrt{3}-1\right)^{2}
Express \frac{8\sqrt{2}-4\sqrt{6}}{2}\sqrt{2} as a single fraction.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(3-2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(4-2\sqrt{3}\right)
Add 3 and 1 to get 4.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\frac{2\left(4-2\sqrt{3}\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4-2\sqrt{3} times \frac{2}{2}.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}-2\left(4-2\sqrt{3}\right)}{2}
Since \frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2} and \frac{2\left(4-2\sqrt{3}\right)}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{16-8\sqrt{3}-8+4\sqrt{3}}{2}
Do the multiplications in \left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}-2\left(4-2\sqrt{3}\right).
\frac{8-4\sqrt{3}}{2}
Do the calculations in 16-8\sqrt{3}-8+4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}