Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(\sqrt{3}-1\right)^{2}
Express \frac{8\sqrt{2}-4\sqrt{6}}{2}\sqrt{2} as a single fraction.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(3-2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\left(4-2\sqrt{3}\right)
Add 3 and 1 to get 4.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2}-\frac{2\left(4-2\sqrt{3}\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4-2\sqrt{3} times \frac{2}{2}.
\frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}-2\left(4-2\sqrt{3}\right)}{2}
Since \frac{\left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}}{2} and \frac{2\left(4-2\sqrt{3}\right)}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{16-8\sqrt{3}-8+4\sqrt{3}}{2}
Do the multiplications in \left(8\sqrt{2}-4\sqrt{6}\right)\sqrt{2}-2\left(4-2\sqrt{3}\right).
\frac{8-4\sqrt{3}}{2}
Do the calculations in 16-8\sqrt{3}-8+4\sqrt{3}.