Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(8x+4\right)\left(x^{2}-2x\right)}{x-1}}{\frac{x^{2}}{1-x}}
Express \left(8x+4\right)\times \frac{x^{2}-2x}{x-1} as a single fraction.
\frac{\left(8x+4\right)\left(x^{2}-2x\right)\left(1-x\right)}{\left(x-1\right)x^{2}}
Divide \frac{\left(8x+4\right)\left(x^{2}-2x\right)}{x-1} by \frac{x^{2}}{1-x} by multiplying \frac{\left(8x+4\right)\left(x^{2}-2x\right)}{x-1} by the reciprocal of \frac{x^{2}}{1-x}.
\frac{-\left(x-1\right)\left(8x+4\right)\left(x^{2}-2x\right)}{\left(x-1\right)x^{2}}
Extract the negative sign in 1-x.
\frac{-\left(8x+4\right)\left(x^{2}-2x\right)}{x^{2}}
Cancel out x-1 in both numerator and denominator.
\frac{-4x\left(x-2\right)\left(2x+1\right)}{x^{2}}
Factor the expressions that are not already factored.
\frac{-4\left(x-2\right)\left(2x+1\right)}{x}
Cancel out x in both numerator and denominator.
\frac{-8x^{2}+12x+8}{x}
Expand the expression.
\frac{\frac{\left(8x+4\right)\left(x^{2}-2x\right)}{x-1}}{\frac{x^{2}}{1-x}}
Express \left(8x+4\right)\times \frac{x^{2}-2x}{x-1} as a single fraction.
\frac{\left(8x+4\right)\left(x^{2}-2x\right)\left(1-x\right)}{\left(x-1\right)x^{2}}
Divide \frac{\left(8x+4\right)\left(x^{2}-2x\right)}{x-1} by \frac{x^{2}}{1-x} by multiplying \frac{\left(8x+4\right)\left(x^{2}-2x\right)}{x-1} by the reciprocal of \frac{x^{2}}{1-x}.
\frac{-\left(x-1\right)\left(8x+4\right)\left(x^{2}-2x\right)}{\left(x-1\right)x^{2}}
Extract the negative sign in 1-x.
\frac{-\left(8x+4\right)\left(x^{2}-2x\right)}{x^{2}}
Cancel out x-1 in both numerator and denominator.
\frac{-4x\left(x-2\right)\left(2x+1\right)}{x^{2}}
Factor the expressions that are not already factored.
\frac{-4\left(x-2\right)\left(2x+1\right)}{x}
Cancel out x in both numerator and denominator.
\frac{-8x^{2}+12x+8}{x}
Expand the expression.