Solve for a
a=6
a=22
Share
Copied to clipboard
7200+700a-25a^{2}=7200+3300
Use the distributive property to multiply 8+a by 900-25a and combine like terms.
7200+700a-25a^{2}=10500
Add 7200 and 3300 to get 10500.
7200+700a-25a^{2}-10500=0
Subtract 10500 from both sides.
-3300+700a-25a^{2}=0
Subtract 10500 from 7200 to get -3300.
-25a^{2}+700a-3300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-700±\sqrt{700^{2}-4\left(-25\right)\left(-3300\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 700 for b, and -3300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-700±\sqrt{490000-4\left(-25\right)\left(-3300\right)}}{2\left(-25\right)}
Square 700.
a=\frac{-700±\sqrt{490000+100\left(-3300\right)}}{2\left(-25\right)}
Multiply -4 times -25.
a=\frac{-700±\sqrt{490000-330000}}{2\left(-25\right)}
Multiply 100 times -3300.
a=\frac{-700±\sqrt{160000}}{2\left(-25\right)}
Add 490000 to -330000.
a=\frac{-700±400}{2\left(-25\right)}
Take the square root of 160000.
a=\frac{-700±400}{-50}
Multiply 2 times -25.
a=-\frac{300}{-50}
Now solve the equation a=\frac{-700±400}{-50} when ± is plus. Add -700 to 400.
a=6
Divide -300 by -50.
a=-\frac{1100}{-50}
Now solve the equation a=\frac{-700±400}{-50} when ± is minus. Subtract 400 from -700.
a=22
Divide -1100 by -50.
a=6 a=22
The equation is now solved.
7200+700a-25a^{2}=7200+3300
Use the distributive property to multiply 8+a by 900-25a and combine like terms.
7200+700a-25a^{2}=10500
Add 7200 and 3300 to get 10500.
700a-25a^{2}=10500-7200
Subtract 7200 from both sides.
700a-25a^{2}=3300
Subtract 7200 from 10500 to get 3300.
-25a^{2}+700a=3300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-25a^{2}+700a}{-25}=\frac{3300}{-25}
Divide both sides by -25.
a^{2}+\frac{700}{-25}a=\frac{3300}{-25}
Dividing by -25 undoes the multiplication by -25.
a^{2}-28a=\frac{3300}{-25}
Divide 700 by -25.
a^{2}-28a=-132
Divide 3300 by -25.
a^{2}-28a+\left(-14\right)^{2}=-132+\left(-14\right)^{2}
Divide -28, the coefficient of the x term, by 2 to get -14. Then add the square of -14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-28a+196=-132+196
Square -14.
a^{2}-28a+196=64
Add -132 to 196.
\left(a-14\right)^{2}=64
Factor a^{2}-28a+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-14\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
a-14=8 a-14=-8
Simplify.
a=22 a=6
Add 14 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}