Evaluate
12+6i
Real Part
12
Share
Copied to clipboard
8+8i+\left(1+2i\right)-\left(-3+4i\right)
The opposite of -1-2i is 1+2i.
8+1+\left(8+2\right)i-\left(-3+4i\right)
Combine the real and imaginary parts in numbers 8+8i and 1+2i.
9+10i-\left(-3+4i\right)
Add 8 to 1. Add 8 to 2.
9-\left(-3\right)+\left(10-4\right)i
Subtract -3+4i from 9+10i by subtracting corresponding real and imaginary parts.
12+6i
Subtract -3 from 9. Subtract 4 from 10.
Re(8+8i+\left(1+2i\right)-\left(-3+4i\right))
The opposite of -1-2i is 1+2i.
Re(8+1+\left(8+2\right)i-\left(-3+4i\right))
Combine the real and imaginary parts in numbers 8+8i and 1+2i.
Re(9+10i-\left(-3+4i\right))
Add 8 to 1. Add 8 to 2.
Re(9-\left(-3\right)+\left(10-4\right)i)
Subtract -3+4i from 9+10i by subtracting corresponding real and imaginary parts.
Re(12+6i)
Subtract -3 from 9. Subtract 4 from 10.
12
The real part of 12+6i is 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}