Evaluate (complex solution)
58+16\sqrt{6}i\approx 58+39.191835885i
Expand (complex solution)
58+16\sqrt{6}i
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\left(8+\sqrt{6}i\right)^{2}
Factor -6=6\left(-1\right). Rewrite the square root of the product \sqrt{6\left(-1\right)} as the product of square roots \sqrt{6}\sqrt{-1}. By definition, the square root of -1 is i.
64+16i\sqrt{6}-\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+\sqrt{6}i\right)^{2}.
64+16i\sqrt{6}-6
The square of \sqrt{6} is 6.
58+16i\sqrt{6}
Subtract 6 from 64 to get 58.
\left(8+\sqrt{6}i\right)^{2}
Factor -6=6\left(-1\right). Rewrite the square root of the product \sqrt{6\left(-1\right)} as the product of square roots \sqrt{6}\sqrt{-1}. By definition, the square root of -1 is i.
64+16i\sqrt{6}-\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+\sqrt{6}i\right)^{2}.
64+16i\sqrt{6}-6
The square of \sqrt{6} is 6.
58+16i\sqrt{6}
Subtract 6 from 64 to get 58.
64+16\sqrt{-6}+\left(\sqrt{-6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+\sqrt{-6}\right)^{2}.
64+16\sqrt{-6}-6
Calculate \sqrt{-6} to the power of 2 and get -6.
58+16\sqrt{-6}
Subtract 6 from 64 to get 58.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}