Solve for x (complex solution)
x=\frac{15+\sqrt{11}i}{2}\approx 7.5+1.658312395i
x=\frac{-\sqrt{11}i+15}{2}\approx 7.5-1.658312395i
Graph
Share
Copied to clipboard
608+120x-8x^{2}=1080
Use the distributive property to multiply 76-4x by 8+2x and combine like terms.
608+120x-8x^{2}-1080=0
Subtract 1080 from both sides.
-472+120x-8x^{2}=0
Subtract 1080 from 608 to get -472.
-8x^{2}+120x-472=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-120±\sqrt{120^{2}-4\left(-8\right)\left(-472\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 120 for b, and -472 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\left(-8\right)\left(-472\right)}}{2\left(-8\right)}
Square 120.
x=\frac{-120±\sqrt{14400+32\left(-472\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-120±\sqrt{14400-15104}}{2\left(-8\right)}
Multiply 32 times -472.
x=\frac{-120±\sqrt{-704}}{2\left(-8\right)}
Add 14400 to -15104.
x=\frac{-120±8\sqrt{11}i}{2\left(-8\right)}
Take the square root of -704.
x=\frac{-120±8\sqrt{11}i}{-16}
Multiply 2 times -8.
x=\frac{-120+8\sqrt{11}i}{-16}
Now solve the equation x=\frac{-120±8\sqrt{11}i}{-16} when ± is plus. Add -120 to 8i\sqrt{11}.
x=\frac{-\sqrt{11}i+15}{2}
Divide -120+8i\sqrt{11} by -16.
x=\frac{-8\sqrt{11}i-120}{-16}
Now solve the equation x=\frac{-120±8\sqrt{11}i}{-16} when ± is minus. Subtract 8i\sqrt{11} from -120.
x=\frac{15+\sqrt{11}i}{2}
Divide -120-8i\sqrt{11} by -16.
x=\frac{-\sqrt{11}i+15}{2} x=\frac{15+\sqrt{11}i}{2}
The equation is now solved.
608+120x-8x^{2}=1080
Use the distributive property to multiply 76-4x by 8+2x and combine like terms.
120x-8x^{2}=1080-608
Subtract 608 from both sides.
120x-8x^{2}=472
Subtract 608 from 1080 to get 472.
-8x^{2}+120x=472
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+120x}{-8}=\frac{472}{-8}
Divide both sides by -8.
x^{2}+\frac{120}{-8}x=\frac{472}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-15x=\frac{472}{-8}
Divide 120 by -8.
x^{2}-15x=-59
Divide 472 by -8.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-59+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-59+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=-\frac{11}{4}
Add -59 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=-\frac{11}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{\sqrt{11}i}{2} x-\frac{15}{2}=-\frac{\sqrt{11}i}{2}
Simplify.
x=\frac{15+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i+15}{2}
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}