( 7 y ^ { 6 } + 2 x ^ { 5 } y ) d x - ( 6 x y ^ { 5 } + x ^ { 6 } ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&\left(x+y\right)\left(x^{4}+x^{2}y^{2}-xy^{3}+y^{4}-yx^{3}\right)=0\text{ or }y=0\text{ or }x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=0\text{ or }y=-x\text{ or }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x\in e^{\frac{\pi i}{5}}y,0,e^{\frac{3\pi i}{5}}y,-y,e^{\frac{7\pi i}{5}}y,e^{\frac{9\pi i}{5}}y\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-y\text{; }x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(7y^{6}d+2x^{5}yd\right)x-\left(6xy^{5}+x^{6}\right)dy=0
Use the distributive property to multiply 7y^{6}+2x^{5}y by d.
7y^{6}dx+2ydx^{6}-\left(6xy^{5}+x^{6}\right)dy=0
Use the distributive property to multiply 7y^{6}d+2x^{5}yd by x.
7y^{6}dx+2ydx^{6}-\left(6xy^{5}d+x^{6}d\right)y=0
Use the distributive property to multiply 6xy^{5}+x^{6} by d.
7y^{6}dx+2ydx^{6}-\left(6xdy^{6}+x^{6}dy\right)=0
Use the distributive property to multiply 6xy^{5}d+x^{6}d by y.
7y^{6}dx+2ydx^{6}-6xdy^{6}-x^{6}dy=0
To find the opposite of 6xdy^{6}+x^{6}dy, find the opposite of each term.
y^{6}dx+2ydx^{6}-x^{6}dy=0
Combine 7y^{6}dx and -6xdy^{6} to get y^{6}dx.
y^{6}dx+ydx^{6}=0
Combine 2ydx^{6} and -x^{6}dy to get ydx^{6}.
\left(y^{6}x+yx^{6}\right)d=0
Combine all terms containing d.
\left(xy^{6}+yx^{6}\right)d=0
The equation is in standard form.
d=0
Divide 0 by y^{6}x+yx^{6}.
\left(7y^{6}d+2x^{5}yd\right)x-\left(6xy^{5}+x^{6}\right)dy=0
Use the distributive property to multiply 7y^{6}+2x^{5}y by d.
7y^{6}dx+2ydx^{6}-\left(6xy^{5}+x^{6}\right)dy=0
Use the distributive property to multiply 7y^{6}d+2x^{5}yd by x.
7y^{6}dx+2ydx^{6}-\left(6xy^{5}d+x^{6}d\right)y=0
Use the distributive property to multiply 6xy^{5}+x^{6} by d.
7y^{6}dx+2ydx^{6}-\left(6xdy^{6}+x^{6}dy\right)=0
Use the distributive property to multiply 6xy^{5}d+x^{6}d by y.
7y^{6}dx+2ydx^{6}-6xdy^{6}-x^{6}dy=0
To find the opposite of 6xdy^{6}+x^{6}dy, find the opposite of each term.
y^{6}dx+2ydx^{6}-x^{6}dy=0
Combine 7y^{6}dx and -6xdy^{6} to get y^{6}dx.
y^{6}dx+ydx^{6}=0
Combine 2ydx^{6} and -x^{6}dy to get ydx^{6}.
\left(y^{6}x+yx^{6}\right)d=0
Combine all terms containing d.
\left(xy^{6}+yx^{6}\right)d=0
The equation is in standard form.
d=0
Divide 0 by y^{6}x+yx^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}