Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

49x^{2}-14xa+a^{2}=49x^{2}-bx+9
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(7x-a\right)^{2}.
49x^{2}-bx+9=49x^{2}-14xa+a^{2}
Swap sides so that all variable terms are on the left hand side.
-bx+9=49x^{2}-14xa+a^{2}-49x^{2}
Subtract 49x^{2} from both sides.
-bx+9=-14xa+a^{2}
Combine 49x^{2} and -49x^{2} to get 0.
-bx=-14xa+a^{2}-9
Subtract 9 from both sides.
\left(-x\right)b=-14ax+a^{2}-9
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{-14ax+a^{2}-9}{-x}
Divide both sides by -x.
b=\frac{-14ax+a^{2}-9}{-x}
Dividing by -x undoes the multiplication by -x.
b=-\frac{-14ax+a^{2}-9}{x}
Divide -14xa+a^{2}-9 by -x.
49x^{2}-14xa+a^{2}=49x^{2}-bx+9
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(7x-a\right)^{2}.
49x^{2}-bx+9=49x^{2}-14xa+a^{2}
Swap sides so that all variable terms are on the left hand side.
-bx+9=49x^{2}-14xa+a^{2}-49x^{2}
Subtract 49x^{2} from both sides.
-bx+9=-14xa+a^{2}
Combine 49x^{2} and -49x^{2} to get 0.
-bx=-14xa+a^{2}-9
Subtract 9 from both sides.
\left(-x\right)b=-14ax+a^{2}-9
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{-14ax+a^{2}-9}{-x}
Divide both sides by -x.
b=\frac{-14ax+a^{2}-9}{-x}
Dividing by -x undoes the multiplication by -x.
b=-\frac{-14ax+a^{2}-9}{x}
Divide -14xa+a^{2}-9 by -x.