Solve for x (complex solution)
x=\frac{-\sqrt{6431}i+17}{672}\approx 0.025297619-0.119335589i
x=\frac{17+\sqrt{6431}i}{672}\approx 0.025297619+0.119335589i
Graph
Share
Copied to clipboard
14x^{2}-3x-5=5\left(5\times 7x^{2}-2x\right)\times 2
Use the distributive property to multiply 7x-5 by 2x+1 and combine like terms.
14x^{2}-3x-5=5\left(35x^{2}-2x\right)\times 2
Multiply 5 and 7 to get 35.
14x^{2}-3x-5=10\left(35x^{2}-2x\right)
Multiply 5 and 2 to get 10.
14x^{2}-3x-5=350x^{2}-20x
Use the distributive property to multiply 10 by 35x^{2}-2x.
14x^{2}-3x-5-350x^{2}=-20x
Subtract 350x^{2} from both sides.
-336x^{2}-3x-5=-20x
Combine 14x^{2} and -350x^{2} to get -336x^{2}.
-336x^{2}-3x-5+20x=0
Add 20x to both sides.
-336x^{2}+17x-5=0
Combine -3x and 20x to get 17x.
x=\frac{-17±\sqrt{17^{2}-4\left(-336\right)\left(-5\right)}}{2\left(-336\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -336 for a, 17 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-336\right)\left(-5\right)}}{2\left(-336\right)}
Square 17.
x=\frac{-17±\sqrt{289+1344\left(-5\right)}}{2\left(-336\right)}
Multiply -4 times -336.
x=\frac{-17±\sqrt{289-6720}}{2\left(-336\right)}
Multiply 1344 times -5.
x=\frac{-17±\sqrt{-6431}}{2\left(-336\right)}
Add 289 to -6720.
x=\frac{-17±\sqrt{6431}i}{2\left(-336\right)}
Take the square root of -6431.
x=\frac{-17±\sqrt{6431}i}{-672}
Multiply 2 times -336.
x=\frac{-17+\sqrt{6431}i}{-672}
Now solve the equation x=\frac{-17±\sqrt{6431}i}{-672} when ± is plus. Add -17 to i\sqrt{6431}.
x=\frac{-\sqrt{6431}i+17}{672}
Divide -17+i\sqrt{6431} by -672.
x=\frac{-\sqrt{6431}i-17}{-672}
Now solve the equation x=\frac{-17±\sqrt{6431}i}{-672} when ± is minus. Subtract i\sqrt{6431} from -17.
x=\frac{17+\sqrt{6431}i}{672}
Divide -17-i\sqrt{6431} by -672.
x=\frac{-\sqrt{6431}i+17}{672} x=\frac{17+\sqrt{6431}i}{672}
The equation is now solved.
14x^{2}-3x-5=5\left(5\times 7x^{2}-2x\right)\times 2
Use the distributive property to multiply 7x-5 by 2x+1 and combine like terms.
14x^{2}-3x-5=5\left(35x^{2}-2x\right)\times 2
Multiply 5 and 7 to get 35.
14x^{2}-3x-5=10\left(35x^{2}-2x\right)
Multiply 5 and 2 to get 10.
14x^{2}-3x-5=350x^{2}-20x
Use the distributive property to multiply 10 by 35x^{2}-2x.
14x^{2}-3x-5-350x^{2}=-20x
Subtract 350x^{2} from both sides.
-336x^{2}-3x-5=-20x
Combine 14x^{2} and -350x^{2} to get -336x^{2}.
-336x^{2}-3x-5+20x=0
Add 20x to both sides.
-336x^{2}+17x-5=0
Combine -3x and 20x to get 17x.
-336x^{2}+17x=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{-336x^{2}+17x}{-336}=\frac{5}{-336}
Divide both sides by -336.
x^{2}+\frac{17}{-336}x=\frac{5}{-336}
Dividing by -336 undoes the multiplication by -336.
x^{2}-\frac{17}{336}x=\frac{5}{-336}
Divide 17 by -336.
x^{2}-\frac{17}{336}x=-\frac{5}{336}
Divide 5 by -336.
x^{2}-\frac{17}{336}x+\left(-\frac{17}{672}\right)^{2}=-\frac{5}{336}+\left(-\frac{17}{672}\right)^{2}
Divide -\frac{17}{336}, the coefficient of the x term, by 2 to get -\frac{17}{672}. Then add the square of -\frac{17}{672} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{336}x+\frac{289}{451584}=-\frac{5}{336}+\frac{289}{451584}
Square -\frac{17}{672} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{336}x+\frac{289}{451584}=-\frac{6431}{451584}
Add -\frac{5}{336} to \frac{289}{451584} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{672}\right)^{2}=-\frac{6431}{451584}
Factor x^{2}-\frac{17}{336}x+\frac{289}{451584}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{672}\right)^{2}}=\sqrt{-\frac{6431}{451584}}
Take the square root of both sides of the equation.
x-\frac{17}{672}=\frac{\sqrt{6431}i}{672} x-\frac{17}{672}=-\frac{\sqrt{6431}i}{672}
Simplify.
x=\frac{17+\sqrt{6431}i}{672} x=\frac{-\sqrt{6431}i+17}{672}
Add \frac{17}{672} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}