( 7 x - 2 ) - 6 \cdot [ 4 ( x + 3 ) ] + 180 \leq 15 / (3
Solve for x
x\geq \frac{101}{17}
Graph
Share
Copied to clipboard
7x-2-24\left(x+3\right)+180\leq \frac{15}{3}
Multiply 6 and 4 to get 24.
7x-2-24x-72+180\leq \frac{15}{3}
Use the distributive property to multiply -24 by x+3.
-17x-2-72+180\leq \frac{15}{3}
Combine 7x and -24x to get -17x.
-17x-74+180\leq \frac{15}{3}
Subtract 72 from -2 to get -74.
-17x+106\leq \frac{15}{3}
Add -74 and 180 to get 106.
-17x+106\leq 5
Divide 15 by 3 to get 5.
-17x\leq 5-106
Subtract 106 from both sides.
-17x\leq -101
Subtract 106 from 5 to get -101.
x\geq \frac{-101}{-17}
Divide both sides by -17. Since -17 is negative, the inequality direction is changed.
x\geq \frac{101}{17}
Fraction \frac{-101}{-17} can be simplified to \frac{101}{17} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}