Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-35x^{2}-49x+168=4\left(2x-7\right)\left(4x+12\right)
Use the distributive property to multiply 7x+21 by -5x+8 and combine like terms.
-35x^{2}-49x+168=\left(8x-28\right)\left(4x+12\right)
Use the distributive property to multiply 4 by 2x-7.
-35x^{2}-49x+168=32x^{2}-16x-336
Use the distributive property to multiply 8x-28 by 4x+12 and combine like terms.
-35x^{2}-49x+168-32x^{2}=-16x-336
Subtract 32x^{2} from both sides.
-67x^{2}-49x+168=-16x-336
Combine -35x^{2} and -32x^{2} to get -67x^{2}.
-67x^{2}-49x+168+16x=-336
Add 16x to both sides.
-67x^{2}-33x+168=-336
Combine -49x and 16x to get -33x.
-67x^{2}-33x+168+336=0
Add 336 to both sides.
-67x^{2}-33x+504=0
Add 168 and 336 to get 504.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\left(-67\right)\times 504}}{2\left(-67\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -67 for a, -33 for b, and 504 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\left(-67\right)\times 504}}{2\left(-67\right)}
Square -33.
x=\frac{-\left(-33\right)±\sqrt{1089+268\times 504}}{2\left(-67\right)}
Multiply -4 times -67.
x=\frac{-\left(-33\right)±\sqrt{1089+135072}}{2\left(-67\right)}
Multiply 268 times 504.
x=\frac{-\left(-33\right)±\sqrt{136161}}{2\left(-67\right)}
Add 1089 to 135072.
x=\frac{-\left(-33\right)±369}{2\left(-67\right)}
Take the square root of 136161.
x=\frac{33±369}{2\left(-67\right)}
The opposite of -33 is 33.
x=\frac{33±369}{-134}
Multiply 2 times -67.
x=\frac{402}{-134}
Now solve the equation x=\frac{33±369}{-134} when ± is plus. Add 33 to 369.
x=-3
Divide 402 by -134.
x=-\frac{336}{-134}
Now solve the equation x=\frac{33±369}{-134} when ± is minus. Subtract 369 from 33.
x=\frac{168}{67}
Reduce the fraction \frac{-336}{-134} to lowest terms by extracting and canceling out 2.
x=-3 x=\frac{168}{67}
The equation is now solved.
-35x^{2}-49x+168=4\left(2x-7\right)\left(4x+12\right)
Use the distributive property to multiply 7x+21 by -5x+8 and combine like terms.
-35x^{2}-49x+168=\left(8x-28\right)\left(4x+12\right)
Use the distributive property to multiply 4 by 2x-7.
-35x^{2}-49x+168=32x^{2}-16x-336
Use the distributive property to multiply 8x-28 by 4x+12 and combine like terms.
-35x^{2}-49x+168-32x^{2}=-16x-336
Subtract 32x^{2} from both sides.
-67x^{2}-49x+168=-16x-336
Combine -35x^{2} and -32x^{2} to get -67x^{2}.
-67x^{2}-49x+168+16x=-336
Add 16x to both sides.
-67x^{2}-33x+168=-336
Combine -49x and 16x to get -33x.
-67x^{2}-33x=-336-168
Subtract 168 from both sides.
-67x^{2}-33x=-504
Subtract 168 from -336 to get -504.
\frac{-67x^{2}-33x}{-67}=-\frac{504}{-67}
Divide both sides by -67.
x^{2}+\left(-\frac{33}{-67}\right)x=-\frac{504}{-67}
Dividing by -67 undoes the multiplication by -67.
x^{2}+\frac{33}{67}x=-\frac{504}{-67}
Divide -33 by -67.
x^{2}+\frac{33}{67}x=\frac{504}{67}
Divide -504 by -67.
x^{2}+\frac{33}{67}x+\left(\frac{33}{134}\right)^{2}=\frac{504}{67}+\left(\frac{33}{134}\right)^{2}
Divide \frac{33}{67}, the coefficient of the x term, by 2 to get \frac{33}{134}. Then add the square of \frac{33}{134} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{33}{67}x+\frac{1089}{17956}=\frac{504}{67}+\frac{1089}{17956}
Square \frac{33}{134} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{33}{67}x+\frac{1089}{17956}=\frac{136161}{17956}
Add \frac{504}{67} to \frac{1089}{17956} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{33}{134}\right)^{2}=\frac{136161}{17956}
Factor x^{2}+\frac{33}{67}x+\frac{1089}{17956}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{33}{134}\right)^{2}}=\sqrt{\frac{136161}{17956}}
Take the square root of both sides of the equation.
x+\frac{33}{134}=\frac{369}{134} x+\frac{33}{134}=-\frac{369}{134}
Simplify.
x=\frac{168}{67} x=-3
Subtract \frac{33}{134} from both sides of the equation.