Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

49x^{2}+14x+1=3x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7x+1\right)^{2}.
49x^{2}+14x+1-3x=0
Subtract 3x from both sides.
49x^{2}+11x+1=0
Combine 14x and -3x to get 11x.
x=\frac{-11±\sqrt{11^{2}-4\times 49}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 11 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 49}}{2\times 49}
Square 11.
x=\frac{-11±\sqrt{121-196}}{2\times 49}
Multiply -4 times 49.
x=\frac{-11±\sqrt{-75}}{2\times 49}
Add 121 to -196.
x=\frac{-11±5\sqrt{3}i}{2\times 49}
Take the square root of -75.
x=\frac{-11±5\sqrt{3}i}{98}
Multiply 2 times 49.
x=\frac{-11+5\sqrt{3}i}{98}
Now solve the equation x=\frac{-11±5\sqrt{3}i}{98} when ± is plus. Add -11 to 5i\sqrt{3}.
x=\frac{-5\sqrt{3}i-11}{98}
Now solve the equation x=\frac{-11±5\sqrt{3}i}{98} when ± is minus. Subtract 5i\sqrt{3} from -11.
x=\frac{-11+5\sqrt{3}i}{98} x=\frac{-5\sqrt{3}i-11}{98}
The equation is now solved.
49x^{2}+14x+1=3x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7x+1\right)^{2}.
49x^{2}+14x+1-3x=0
Subtract 3x from both sides.
49x^{2}+11x+1=0
Combine 14x and -3x to get 11x.
49x^{2}+11x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{49x^{2}+11x}{49}=-\frac{1}{49}
Divide both sides by 49.
x^{2}+\frac{11}{49}x=-\frac{1}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}+\frac{11}{49}x+\left(\frac{11}{98}\right)^{2}=-\frac{1}{49}+\left(\frac{11}{98}\right)^{2}
Divide \frac{11}{49}, the coefficient of the x term, by 2 to get \frac{11}{98}. Then add the square of \frac{11}{98} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{49}x+\frac{121}{9604}=-\frac{1}{49}+\frac{121}{9604}
Square \frac{11}{98} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{49}x+\frac{121}{9604}=-\frac{75}{9604}
Add -\frac{1}{49} to \frac{121}{9604} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{98}\right)^{2}=-\frac{75}{9604}
Factor x^{2}+\frac{11}{49}x+\frac{121}{9604}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{98}\right)^{2}}=\sqrt{-\frac{75}{9604}}
Take the square root of both sides of the equation.
x+\frac{11}{98}=\frac{5\sqrt{3}i}{98} x+\frac{11}{98}=-\frac{5\sqrt{3}i}{98}
Simplify.
x=\frac{-11+5\sqrt{3}i}{98} x=\frac{-5\sqrt{3}i-11}{98}
Subtract \frac{11}{98} from both sides of the equation.