Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

49x^{2}+7x\left(-\frac{2}{7}\right)+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Apply the distributive property by multiplying each term of 7x+\frac{5}{3} by each term of 7x-\frac{2}{7}.
49x^{2}-2x+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Cancel out 7 and 7.
49x^{2}-2x+\frac{5\times 7}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Express \frac{5}{3}\times 7 as a single fraction.
49x^{2}-2x+\frac{35}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Multiply 5 and 7 to get 35.
49x^{2}+\frac{29}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Combine -2x and \frac{35}{3}x to get \frac{29}{3}x.
49x^{2}+\frac{29}{3}x+\frac{5\left(-2\right)}{3\times 7}
Multiply \frac{5}{3} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
49x^{2}+\frac{29}{3}x+\frac{-10}{21}
Do the multiplications in the fraction \frac{5\left(-2\right)}{3\times 7}.
49x^{2}+\frac{29}{3}x-\frac{10}{21}
Fraction \frac{-10}{21} can be rewritten as -\frac{10}{21} by extracting the negative sign.
49x^{2}+7x\left(-\frac{2}{7}\right)+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Apply the distributive property by multiplying each term of 7x+\frac{5}{3} by each term of 7x-\frac{2}{7}.
49x^{2}-2x+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Cancel out 7 and 7.
49x^{2}-2x+\frac{5\times 7}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Express \frac{5}{3}\times 7 as a single fraction.
49x^{2}-2x+\frac{35}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Multiply 5 and 7 to get 35.
49x^{2}+\frac{29}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Combine -2x and \frac{35}{3}x to get \frac{29}{3}x.
49x^{2}+\frac{29}{3}x+\frac{5\left(-2\right)}{3\times 7}
Multiply \frac{5}{3} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
49x^{2}+\frac{29}{3}x+\frac{-10}{21}
Do the multiplications in the fraction \frac{5\left(-2\right)}{3\times 7}.
49x^{2}+\frac{29}{3}x-\frac{10}{21}
Fraction \frac{-10}{21} can be rewritten as -\frac{10}{21} by extracting the negative sign.