Evaluate
49x^{2}+\frac{29x}{3}-\frac{10}{21}
Expand
49x^{2}+\frac{29x}{3}-\frac{10}{21}
Graph
Share
Copied to clipboard
49x^{2}+7x\left(-\frac{2}{7}\right)+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Apply the distributive property by multiplying each term of 7x+\frac{5}{3} by each term of 7x-\frac{2}{7}.
49x^{2}-2x+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Cancel out 7 and 7.
49x^{2}-2x+\frac{5\times 7}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Express \frac{5}{3}\times 7 as a single fraction.
49x^{2}-2x+\frac{35}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Multiply 5 and 7 to get 35.
49x^{2}+\frac{29}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Combine -2x and \frac{35}{3}x to get \frac{29}{3}x.
49x^{2}+\frac{29}{3}x+\frac{5\left(-2\right)}{3\times 7}
Multiply \frac{5}{3} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
49x^{2}+\frac{29}{3}x+\frac{-10}{21}
Do the multiplications in the fraction \frac{5\left(-2\right)}{3\times 7}.
49x^{2}+\frac{29}{3}x-\frac{10}{21}
Fraction \frac{-10}{21} can be rewritten as -\frac{10}{21} by extracting the negative sign.
49x^{2}+7x\left(-\frac{2}{7}\right)+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Apply the distributive property by multiplying each term of 7x+\frac{5}{3} by each term of 7x-\frac{2}{7}.
49x^{2}-2x+\frac{5}{3}\times 7x+\frac{5}{3}\left(-\frac{2}{7}\right)
Cancel out 7 and 7.
49x^{2}-2x+\frac{5\times 7}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Express \frac{5}{3}\times 7 as a single fraction.
49x^{2}-2x+\frac{35}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Multiply 5 and 7 to get 35.
49x^{2}+\frac{29}{3}x+\frac{5}{3}\left(-\frac{2}{7}\right)
Combine -2x and \frac{35}{3}x to get \frac{29}{3}x.
49x^{2}+\frac{29}{3}x+\frac{5\left(-2\right)}{3\times 7}
Multiply \frac{5}{3} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
49x^{2}+\frac{29}{3}x+\frac{-10}{21}
Do the multiplications in the fraction \frac{5\left(-2\right)}{3\times 7}.
49x^{2}+\frac{29}{3}x-\frac{10}{21}
Fraction \frac{-10}{21} can be rewritten as -\frac{10}{21} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}