Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

7u^{2}+58u+63=47
Use the distributive property to multiply 7u+9 by u+7 and combine like terms.
7u^{2}+58u+63-47=0
Subtract 47 from both sides.
7u^{2}+58u+16=0
Subtract 47 from 63 to get 16.
u=\frac{-58±\sqrt{58^{2}-4\times 7\times 16}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 58 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-58±\sqrt{3364-4\times 7\times 16}}{2\times 7}
Square 58.
u=\frac{-58±\sqrt{3364-28\times 16}}{2\times 7}
Multiply -4 times 7.
u=\frac{-58±\sqrt{3364-448}}{2\times 7}
Multiply -28 times 16.
u=\frac{-58±\sqrt{2916}}{2\times 7}
Add 3364 to -448.
u=\frac{-58±54}{2\times 7}
Take the square root of 2916.
u=\frac{-58±54}{14}
Multiply 2 times 7.
u=-\frac{4}{14}
Now solve the equation u=\frac{-58±54}{14} when ± is plus. Add -58 to 54.
u=-\frac{2}{7}
Reduce the fraction \frac{-4}{14} to lowest terms by extracting and canceling out 2.
u=-\frac{112}{14}
Now solve the equation u=\frac{-58±54}{14} when ± is minus. Subtract 54 from -58.
u=-8
Divide -112 by 14.
u=-\frac{2}{7} u=-8
The equation is now solved.
7u^{2}+58u+63=47
Use the distributive property to multiply 7u+9 by u+7 and combine like terms.
7u^{2}+58u=47-63
Subtract 63 from both sides.
7u^{2}+58u=-16
Subtract 63 from 47 to get -16.
\frac{7u^{2}+58u}{7}=-\frac{16}{7}
Divide both sides by 7.
u^{2}+\frac{58}{7}u=-\frac{16}{7}
Dividing by 7 undoes the multiplication by 7.
u^{2}+\frac{58}{7}u+\left(\frac{29}{7}\right)^{2}=-\frac{16}{7}+\left(\frac{29}{7}\right)^{2}
Divide \frac{58}{7}, the coefficient of the x term, by 2 to get \frac{29}{7}. Then add the square of \frac{29}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}+\frac{58}{7}u+\frac{841}{49}=-\frac{16}{7}+\frac{841}{49}
Square \frac{29}{7} by squaring both the numerator and the denominator of the fraction.
u^{2}+\frac{58}{7}u+\frac{841}{49}=\frac{729}{49}
Add -\frac{16}{7} to \frac{841}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(u+\frac{29}{7}\right)^{2}=\frac{729}{49}
Factor u^{2}+\frac{58}{7}u+\frac{841}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{29}{7}\right)^{2}}=\sqrt{\frac{729}{49}}
Take the square root of both sides of the equation.
u+\frac{29}{7}=\frac{27}{7} u+\frac{29}{7}=-\frac{27}{7}
Simplify.
u=-\frac{2}{7} u=-8
Subtract \frac{29}{7} from both sides of the equation.