Evaluate
-\frac{42t^{\frac{2}{3}}}{s}
Differentiate w.r.t. t
-\frac{28}{\sqrt[3]{t}s}
Share
Copied to clipboard
7^{1}s^{\frac{7}{4}}t^{-\frac{5}{3}}\left(-6\right)^{1}s^{-\frac{11}{4}}t^{\frac{7}{3}}
Use the rules of exponents to simplify the expression.
7^{1}\left(-6\right)^{1}s^{\frac{7}{4}}s^{-\frac{11}{4}}t^{-\frac{5}{3}}t^{\frac{7}{3}}
Use the Commutative Property of Multiplication.
7^{1}\left(-6\right)^{1}s^{\frac{7-11}{4}}t^{\frac{-5+7}{3}}
To multiply powers of the same base, add their exponents.
7^{1}\left(-6\right)^{1}\times \frac{1}{s}t^{\frac{-5+7}{3}}
Add the exponents \frac{7}{4} and -\frac{11}{4}.
7^{1}\left(-6\right)^{1}\times \frac{1}{s}t^{\frac{2}{3}}
Add the exponents -\frac{5}{3} and \frac{7}{3}.
-42\times \frac{1}{s}t^{\frac{2}{3}}
Multiply 7 times -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}