Factor
7\left(q-\frac{-\sqrt{11}-5}{7}\right)\left(q-\frac{\sqrt{11}-5}{7}\right)
Evaluate
7q^{2}+10q+2
Share
Copied to clipboard
factor(7q^{2}+10q+2)
Combine q and 9q to get 10q.
7q^{2}+10q+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-10±\sqrt{10^{2}-4\times 7\times 2}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-10±\sqrt{100-4\times 7\times 2}}{2\times 7}
Square 10.
q=\frac{-10±\sqrt{100-28\times 2}}{2\times 7}
Multiply -4 times 7.
q=\frac{-10±\sqrt{100-56}}{2\times 7}
Multiply -28 times 2.
q=\frac{-10±\sqrt{44}}{2\times 7}
Add 100 to -56.
q=\frac{-10±2\sqrt{11}}{2\times 7}
Take the square root of 44.
q=\frac{-10±2\sqrt{11}}{14}
Multiply 2 times 7.
q=\frac{2\sqrt{11}-10}{14}
Now solve the equation q=\frac{-10±2\sqrt{11}}{14} when ± is plus. Add -10 to 2\sqrt{11}.
q=\frac{\sqrt{11}-5}{7}
Divide -10+2\sqrt{11} by 14.
q=\frac{-2\sqrt{11}-10}{14}
Now solve the equation q=\frac{-10±2\sqrt{11}}{14} when ± is minus. Subtract 2\sqrt{11} from -10.
q=\frac{-\sqrt{11}-5}{7}
Divide -10-2\sqrt{11} by 14.
7q^{2}+10q+2=7\left(q-\frac{\sqrt{11}-5}{7}\right)\left(q-\frac{-\sqrt{11}-5}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{11}}{7} for x_{1} and \frac{-5-\sqrt{11}}{7} for x_{2}.
7q^{2}+10q+2
Combine q and 9q to get 10q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}