Solve for m
m = \frac{11}{7} = 1\frac{4}{7} \approx 1.571428571
m = -\frac{9}{7} = -1\frac{2}{7} \approx -1.285714286
Share
Copied to clipboard
49m^{2}-14m+1-100=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7m-1\right)^{2}.
49m^{2}-14m-99=0
Subtract 100 from 1 to get -99.
a+b=-14 ab=49\left(-99\right)=-4851
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 49m^{2}+am+bm-99. To find a and b, set up a system to be solved.
1,-4851 3,-1617 7,-693 9,-539 11,-441 21,-231 33,-147 49,-99 63,-77
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4851.
1-4851=-4850 3-1617=-1614 7-693=-686 9-539=-530 11-441=-430 21-231=-210 33-147=-114 49-99=-50 63-77=-14
Calculate the sum for each pair.
a=-77 b=63
The solution is the pair that gives sum -14.
\left(49m^{2}-77m\right)+\left(63m-99\right)
Rewrite 49m^{2}-14m-99 as \left(49m^{2}-77m\right)+\left(63m-99\right).
7m\left(7m-11\right)+9\left(7m-11\right)
Factor out 7m in the first and 9 in the second group.
\left(7m-11\right)\left(7m+9\right)
Factor out common term 7m-11 by using distributive property.
m=\frac{11}{7} m=-\frac{9}{7}
To find equation solutions, solve 7m-11=0 and 7m+9=0.
49m^{2}-14m+1-100=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7m-1\right)^{2}.
49m^{2}-14m-99=0
Subtract 100 from 1 to get -99.
m=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49\left(-99\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, -14 for b, and -99 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-14\right)±\sqrt{196-4\times 49\left(-99\right)}}{2\times 49}
Square -14.
m=\frac{-\left(-14\right)±\sqrt{196-196\left(-99\right)}}{2\times 49}
Multiply -4 times 49.
m=\frac{-\left(-14\right)±\sqrt{196+19404}}{2\times 49}
Multiply -196 times -99.
m=\frac{-\left(-14\right)±\sqrt{19600}}{2\times 49}
Add 196 to 19404.
m=\frac{-\left(-14\right)±140}{2\times 49}
Take the square root of 19600.
m=\frac{14±140}{2\times 49}
The opposite of -14 is 14.
m=\frac{14±140}{98}
Multiply 2 times 49.
m=\frac{154}{98}
Now solve the equation m=\frac{14±140}{98} when ± is plus. Add 14 to 140.
m=\frac{11}{7}
Reduce the fraction \frac{154}{98} to lowest terms by extracting and canceling out 14.
m=-\frac{126}{98}
Now solve the equation m=\frac{14±140}{98} when ± is minus. Subtract 140 from 14.
m=-\frac{9}{7}
Reduce the fraction \frac{-126}{98} to lowest terms by extracting and canceling out 14.
m=\frac{11}{7} m=-\frac{9}{7}
The equation is now solved.
49m^{2}-14m+1-100=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7m-1\right)^{2}.
49m^{2}-14m-99=0
Subtract 100 from 1 to get -99.
49m^{2}-14m=99
Add 99 to both sides. Anything plus zero gives itself.
\frac{49m^{2}-14m}{49}=\frac{99}{49}
Divide both sides by 49.
m^{2}+\left(-\frac{14}{49}\right)m=\frac{99}{49}
Dividing by 49 undoes the multiplication by 49.
m^{2}-\frac{2}{7}m=\frac{99}{49}
Reduce the fraction \frac{-14}{49} to lowest terms by extracting and canceling out 7.
m^{2}-\frac{2}{7}m+\left(-\frac{1}{7}\right)^{2}=\frac{99}{49}+\left(-\frac{1}{7}\right)^{2}
Divide -\frac{2}{7}, the coefficient of the x term, by 2 to get -\frac{1}{7}. Then add the square of -\frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{2}{7}m+\frac{1}{49}=\frac{99+1}{49}
Square -\frac{1}{7} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{2}{7}m+\frac{1}{49}=\frac{100}{49}
Add \frac{99}{49} to \frac{1}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{1}{7}\right)^{2}=\frac{100}{49}
Factor m^{2}-\frac{2}{7}m+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{7}\right)^{2}}=\sqrt{\frac{100}{49}}
Take the square root of both sides of the equation.
m-\frac{1}{7}=\frac{10}{7} m-\frac{1}{7}=-\frac{10}{7}
Simplify.
m=\frac{11}{7} m=-\frac{9}{7}
Add \frac{1}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}