Solve for d
d=-8
d=-\frac{2}{7}\approx -0.285714286
Share
Copied to clipboard
7d^{2}+58d+63=47
Use the distributive property to multiply 7d+9 by d+7 and combine like terms.
7d^{2}+58d+63-47=0
Subtract 47 from both sides.
7d^{2}+58d+16=0
Subtract 47 from 63 to get 16.
d=\frac{-58±\sqrt{58^{2}-4\times 7\times 16}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 58 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-58±\sqrt{3364-4\times 7\times 16}}{2\times 7}
Square 58.
d=\frac{-58±\sqrt{3364-28\times 16}}{2\times 7}
Multiply -4 times 7.
d=\frac{-58±\sqrt{3364-448}}{2\times 7}
Multiply -28 times 16.
d=\frac{-58±\sqrt{2916}}{2\times 7}
Add 3364 to -448.
d=\frac{-58±54}{2\times 7}
Take the square root of 2916.
d=\frac{-58±54}{14}
Multiply 2 times 7.
d=-\frac{4}{14}
Now solve the equation d=\frac{-58±54}{14} when ± is plus. Add -58 to 54.
d=-\frac{2}{7}
Reduce the fraction \frac{-4}{14} to lowest terms by extracting and canceling out 2.
d=-\frac{112}{14}
Now solve the equation d=\frac{-58±54}{14} when ± is minus. Subtract 54 from -58.
d=-8
Divide -112 by 14.
d=-\frac{2}{7} d=-8
The equation is now solved.
7d^{2}+58d+63=47
Use the distributive property to multiply 7d+9 by d+7 and combine like terms.
7d^{2}+58d=47-63
Subtract 63 from both sides.
7d^{2}+58d=-16
Subtract 63 from 47 to get -16.
\frac{7d^{2}+58d}{7}=-\frac{16}{7}
Divide both sides by 7.
d^{2}+\frac{58}{7}d=-\frac{16}{7}
Dividing by 7 undoes the multiplication by 7.
d^{2}+\frac{58}{7}d+\left(\frac{29}{7}\right)^{2}=-\frac{16}{7}+\left(\frac{29}{7}\right)^{2}
Divide \frac{58}{7}, the coefficient of the x term, by 2 to get \frac{29}{7}. Then add the square of \frac{29}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+\frac{58}{7}d+\frac{841}{49}=-\frac{16}{7}+\frac{841}{49}
Square \frac{29}{7} by squaring both the numerator and the denominator of the fraction.
d^{2}+\frac{58}{7}d+\frac{841}{49}=\frac{729}{49}
Add -\frac{16}{7} to \frac{841}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d+\frac{29}{7}\right)^{2}=\frac{729}{49}
Factor d^{2}+\frac{58}{7}d+\frac{841}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{29}{7}\right)^{2}}=\sqrt{\frac{729}{49}}
Take the square root of both sides of the equation.
d+\frac{29}{7}=\frac{27}{7} d+\frac{29}{7}=-\frac{27}{7}
Simplify.
d=-\frac{2}{7} d=-8
Subtract \frac{29}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}