Solve for x
x=\frac{y^{2}-y+18}{4}
Solve for y (complex solution)
y=\frac{\sqrt{16x-71}+1}{2}
y=\frac{-\sqrt{16x-71}+1}{2}
Solve for y
y=\frac{\sqrt{16x-71}+1}{2}
y=\frac{-\sqrt{16x-71}+1}{2}\text{, }x\geq \frac{71}{16}
Graph
Share
Copied to clipboard
49-14x+x^{2}+\left(1-y\right)^{2}=\left(3-x\right)^{2}+5-y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
49-14x+x^{2}+1-2y+y^{2}=\left(3-x\right)^{2}+5-y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-y\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(3-x\right)^{2}+5-y^{2}
Add 49 and 1 to get 50.
50-14x+x^{2}-2y+y^{2}=9-6x+x^{2}+5-y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
50-14x+x^{2}-2y+y^{2}=14-6x+x^{2}-y^{2}
Add 9 and 5 to get 14.
50-14x+x^{2}-2y+y^{2}+6x=14+x^{2}-y^{2}
Add 6x to both sides.
50-8x+x^{2}-2y+y^{2}=14+x^{2}-y^{2}
Combine -14x and 6x to get -8x.
50-8x+x^{2}-2y+y^{2}-x^{2}=14-y^{2}
Subtract x^{2} from both sides.
50-8x-2y+y^{2}=14-y^{2}
Combine x^{2} and -x^{2} to get 0.
-8x-2y+y^{2}=14-y^{2}-50
Subtract 50 from both sides.
-8x-2y+y^{2}=-36-y^{2}
Subtract 50 from 14 to get -36.
-8x+y^{2}=-36-y^{2}+2y
Add 2y to both sides.
-8x=-36-y^{2}+2y-y^{2}
Subtract y^{2} from both sides.
-8x=-36-2y^{2}+2y
Combine -y^{2} and -y^{2} to get -2y^{2}.
-8x=-2y^{2}+2y-36
The equation is in standard form.
\frac{-8x}{-8}=\frac{-2y^{2}+2y-36}{-8}
Divide both sides by -8.
x=\frac{-2y^{2}+2y-36}{-8}
Dividing by -8 undoes the multiplication by -8.
x=\frac{y^{2}}{4}-\frac{y}{4}+\frac{9}{2}
Divide -36-2y^{2}+2y by -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}