Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x-21-x^{2}=1
Use the distributive property to multiply 7-x by x-3 and combine like terms.
10x-21-x^{2}-1=0
Subtract 1 from both sides.
10x-22-x^{2}=0
Subtract 1 from -21 to get -22.
-x^{2}+10x-22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 10 for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
Square 10.
x=\frac{-10±\sqrt{100+4\left(-22\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-10±\sqrt{100-88}}{2\left(-1\right)}
Multiply 4 times -22.
x=\frac{-10±\sqrt{12}}{2\left(-1\right)}
Add 100 to -88.
x=\frac{-10±2\sqrt{3}}{2\left(-1\right)}
Take the square root of 12.
x=\frac{-10±2\sqrt{3}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{3}-10}{-2}
Now solve the equation x=\frac{-10±2\sqrt{3}}{-2} when ± is plus. Add -10 to 2\sqrt{3}.
x=5-\sqrt{3}
Divide -10+2\sqrt{3} by -2.
x=\frac{-2\sqrt{3}-10}{-2}
Now solve the equation x=\frac{-10±2\sqrt{3}}{-2} when ± is minus. Subtract 2\sqrt{3} from -10.
x=\sqrt{3}+5
Divide -10-2\sqrt{3} by -2.
x=5-\sqrt{3} x=\sqrt{3}+5
The equation is now solved.
10x-21-x^{2}=1
Use the distributive property to multiply 7-x by x-3 and combine like terms.
10x-x^{2}=1+21
Add 21 to both sides.
10x-x^{2}=22
Add 1 and 21 to get 22.
-x^{2}+10x=22
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+10x}{-1}=\frac{22}{-1}
Divide both sides by -1.
x^{2}+\frac{10}{-1}x=\frac{22}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-10x=\frac{22}{-1}
Divide 10 by -1.
x^{2}-10x=-22
Divide 22 by -1.
x^{2}-10x+\left(-5\right)^{2}=-22+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-22+25
Square -5.
x^{2}-10x+25=3
Add -22 to 25.
\left(x-5\right)^{2}=3
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x-5=\sqrt{3} x-5=-\sqrt{3}
Simplify.
x=\sqrt{3}+5 x=5-\sqrt{3}
Add 5 to both sides of the equation.