Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

49-\left(2x\right)^{2}=\left(2x+3\right)^{2}-12x
Consider \left(7-2x\right)\left(7+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
49-2^{2}x^{2}=\left(2x+3\right)^{2}-12x
Expand \left(2x\right)^{2}.
49-4x^{2}=\left(2x+3\right)^{2}-12x
Calculate 2 to the power of 2 and get 4.
49-4x^{2}=4x^{2}+12x+9-12x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
49-4x^{2}=4x^{2}+9
Combine 12x and -12x to get 0.
49-4x^{2}-4x^{2}=9
Subtract 4x^{2} from both sides.
49-8x^{2}=9
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
-8x^{2}=9-49
Subtract 49 from both sides.
-8x^{2}=-40
Subtract 49 from 9 to get -40.
x^{2}=\frac{-40}{-8}
Divide both sides by -8.
x^{2}=5
Divide -40 by -8 to get 5.
x=\sqrt{5} x=-\sqrt{5}
Take the square root of both sides of the equation.
49-\left(2x\right)^{2}=\left(2x+3\right)^{2}-12x
Consider \left(7-2x\right)\left(7+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
49-2^{2}x^{2}=\left(2x+3\right)^{2}-12x
Expand \left(2x\right)^{2}.
49-4x^{2}=\left(2x+3\right)^{2}-12x
Calculate 2 to the power of 2 and get 4.
49-4x^{2}=4x^{2}+12x+9-12x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
49-4x^{2}=4x^{2}+9
Combine 12x and -12x to get 0.
49-4x^{2}-4x^{2}=9
Subtract 4x^{2} from both sides.
49-8x^{2}=9
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
49-8x^{2}-9=0
Subtract 9 from both sides.
40-8x^{2}=0
Subtract 9 from 49 to get 40.
-8x^{2}+40=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-8\right)\times 40}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 0 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-8\right)\times 40}}{2\left(-8\right)}
Square 0.
x=\frac{0±\sqrt{32\times 40}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{0±\sqrt{1280}}{2\left(-8\right)}
Multiply 32 times 40.
x=\frac{0±16\sqrt{5}}{2\left(-8\right)}
Take the square root of 1280.
x=\frac{0±16\sqrt{5}}{-16}
Multiply 2 times -8.
x=-\sqrt{5}
Now solve the equation x=\frac{0±16\sqrt{5}}{-16} when ± is plus.
x=\sqrt{5}
Now solve the equation x=\frac{0±16\sqrt{5}}{-16} when ± is minus.
x=-\sqrt{5} x=\sqrt{5}
The equation is now solved.