Evaluate
\frac{65}{9}\approx 7.222222222
Factor
\frac{5 \cdot 13}{3 ^ {2}} = 7\frac{2}{9} = 7.222222222222222
Share
Copied to clipboard
7-\frac{\frac{21+4}{21}}{-\frac{1\times 14+1}{14}}\times \frac{1}{2}-\frac{1}{3}
Multiply 1 and 21 to get 21.
7-\frac{\frac{25}{21}}{-\frac{1\times 14+1}{14}}\times \frac{1}{2}-\frac{1}{3}
Add 21 and 4 to get 25.
7-\frac{\frac{25}{21}}{-\frac{14+1}{14}}\times \frac{1}{2}-\frac{1}{3}
Multiply 1 and 14 to get 14.
7-\frac{\frac{25}{21}}{-\frac{15}{14}}\times \frac{1}{2}-\frac{1}{3}
Add 14 and 1 to get 15.
7-\frac{25}{21}\left(-\frac{14}{15}\right)\times \frac{1}{2}-\frac{1}{3}
Divide \frac{25}{21} by -\frac{15}{14} by multiplying \frac{25}{21} by the reciprocal of -\frac{15}{14}.
7-\frac{25\left(-14\right)}{21\times 15}\times \frac{1}{2}-\frac{1}{3}
Multiply \frac{25}{21} times -\frac{14}{15} by multiplying numerator times numerator and denominator times denominator.
7-\frac{-350}{315}\times \frac{1}{2}-\frac{1}{3}
Do the multiplications in the fraction \frac{25\left(-14\right)}{21\times 15}.
7-\left(-\frac{10}{9}\times \frac{1}{2}\right)-\frac{1}{3}
Reduce the fraction \frac{-350}{315} to lowest terms by extracting and canceling out 35.
7-\frac{-10}{9\times 2}-\frac{1}{3}
Multiply -\frac{10}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
7-\frac{-10}{18}-\frac{1}{3}
Do the multiplications in the fraction \frac{-10}{9\times 2}.
7-\left(-\frac{5}{9}\right)-\frac{1}{3}
Reduce the fraction \frac{-10}{18} to lowest terms by extracting and canceling out 2.
7+\frac{5}{9}-\frac{1}{3}
The opposite of -\frac{5}{9} is \frac{5}{9}.
\frac{63}{9}+\frac{5}{9}-\frac{1}{3}
Convert 7 to fraction \frac{63}{9}.
\frac{63+5}{9}-\frac{1}{3}
Since \frac{63}{9} and \frac{5}{9} have the same denominator, add them by adding their numerators.
\frac{68}{9}-\frac{1}{3}
Add 63 and 5 to get 68.
\frac{68}{9}-\frac{3}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{68}{9} and \frac{1}{3} to fractions with denominator 9.
\frac{68-3}{9}
Since \frac{68}{9} and \frac{3}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{65}{9}
Subtract 3 from 68 to get 65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}