Evaluate
14x-21+\frac{28}{x}
Expand
14x-21+\frac{28}{x}
Graph
Share
Copied to clipboard
\frac{-7}{2x}\left(-4x^{2}+6x-8\right)
Express 7\left(-\frac{1}{2x}\right) as a single fraction.
-4\times \frac{-7}{2x}x^{2}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Use the distributive property to multiply \frac{-7}{2x} by -4x^{2}+6x-8.
\frac{-4\left(-7\right)}{2x}x^{2}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Express -4\times \frac{-7}{2x} as a single fraction.
\frac{-7\left(-1\right)\times 2}{x}x^{2}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Cancel out 2 in both numerator and denominator.
\frac{-7\left(-1\right)\times 2x^{2}}{x}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Express \frac{-7\left(-1\right)\times 2}{x}x^{2} as a single fraction.
-7\left(-1\right)\times 2x+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Cancel out x in both numerator and denominator.
-7\left(-1\right)\times 2x+\frac{6\left(-7\right)}{2x}x-8\times \frac{-7}{2x}
Express 6\times \frac{-7}{2x} as a single fraction.
-7\left(-1\right)\times 2x+\frac{-7\times 3}{x}x-8\times \frac{-7}{2x}
Cancel out 2 in both numerator and denominator.
-7\left(-1\right)\times 2x-7\times 3-8\times \frac{-7}{2x}
Cancel out x and x.
-7\left(-1\right)\times 2x-7\times 3+\frac{-8\left(-7\right)}{2x}
Express -8\times \frac{-7}{2x} as a single fraction.
-7\left(-1\right)\times 2x-7\times 3+\frac{-7\left(-1\right)\times 4}{x}
Cancel out 2 in both numerator and denominator.
7\times 2x-21+\frac{-7\left(-1\right)\times 4}{x}
Do the multiplications.
14x-21+\frac{-7\left(-1\right)\times 4}{x}
Multiply 7 and 2 to get 14.
14x-21+\frac{7\times 4}{x}
Multiply -7 and -1 to get 7.
14x-21+\frac{28}{x}
Multiply 7 and 4 to get 28.
\frac{\left(14x-21\right)x}{x}+\frac{28}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 14x-21 times \frac{x}{x}.
\frac{\left(14x-21\right)x+28}{x}
Since \frac{\left(14x-21\right)x}{x} and \frac{28}{x} have the same denominator, add them by adding their numerators.
\frac{14x^{2}-21x+28}{x}
Do the multiplications in \left(14x-21\right)x+28.
\frac{-7}{2x}\left(-4x^{2}+6x-8\right)
Express 7\left(-\frac{1}{2x}\right) as a single fraction.
-4\times \frac{-7}{2x}x^{2}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Use the distributive property to multiply \frac{-7}{2x} by -4x^{2}+6x-8.
\frac{-4\left(-7\right)}{2x}x^{2}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Express -4\times \frac{-7}{2x} as a single fraction.
\frac{-7\left(-1\right)\times 2}{x}x^{2}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Cancel out 2 in both numerator and denominator.
\frac{-7\left(-1\right)\times 2x^{2}}{x}+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Express \frac{-7\left(-1\right)\times 2}{x}x^{2} as a single fraction.
-7\left(-1\right)\times 2x+6\times \frac{-7}{2x}x-8\times \frac{-7}{2x}
Cancel out x in both numerator and denominator.
-7\left(-1\right)\times 2x+\frac{6\left(-7\right)}{2x}x-8\times \frac{-7}{2x}
Express 6\times \frac{-7}{2x} as a single fraction.
-7\left(-1\right)\times 2x+\frac{-7\times 3}{x}x-8\times \frac{-7}{2x}
Cancel out 2 in both numerator and denominator.
-7\left(-1\right)\times 2x-7\times 3-8\times \frac{-7}{2x}
Cancel out x and x.
-7\left(-1\right)\times 2x-7\times 3+\frac{-8\left(-7\right)}{2x}
Express -8\times \frac{-7}{2x} as a single fraction.
-7\left(-1\right)\times 2x-7\times 3+\frac{-7\left(-1\right)\times 4}{x}
Cancel out 2 in both numerator and denominator.
7\times 2x-21+\frac{-7\left(-1\right)\times 4}{x}
Do the multiplications.
14x-21+\frac{-7\left(-1\right)\times 4}{x}
Multiply 7 and 2 to get 14.
14x-21+\frac{7\times 4}{x}
Multiply -7 and -1 to get 7.
14x-21+\frac{28}{x}
Multiply 7 and 4 to get 28.
\frac{\left(14x-21\right)x}{x}+\frac{28}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 14x-21 times \frac{x}{x}.
\frac{\left(14x-21\right)x+28}{x}
Since \frac{\left(14x-21\right)x}{x} and \frac{28}{x} have the same denominator, add them by adding their numerators.
\frac{14x^{2}-21x+28}{x}
Do the multiplications in \left(14x-21\right)x+28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}