Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\sqrt{2}+3\times 2\sqrt{2}-5\sqrt{50}}{\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{7\sqrt{2}+6\sqrt{2}-5\sqrt{50}}{\sqrt{2}}
Multiply 3 and 2 to get 6.
\frac{13\sqrt{2}-5\sqrt{50}}{\sqrt{2}}
Combine 7\sqrt{2} and 6\sqrt{2} to get 13\sqrt{2}.
\frac{13\sqrt{2}-5\times 5\sqrt{2}}{\sqrt{2}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{13\sqrt{2}-25\sqrt{2}}{\sqrt{2}}
Multiply -5 and 5 to get -25.
\frac{-12\sqrt{2}}{\sqrt{2}}
Combine 13\sqrt{2} and -25\sqrt{2} to get -12\sqrt{2}.
\frac{-12\sqrt{2}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{-12\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-12\sqrt{2}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{-12\times 2}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-24}{2}
Multiply -12 and 2 to get -24.
-12
Divide -24 by 2 to get -12.