Evaluate
\frac{6761}{360}\approx 18.780555556
Factor
\frac{6761}{2 ^ {3} \cdot 3 ^ {2} \cdot 5} = 18\frac{281}{360} = 18.780555555555555
Share
Copied to clipboard
\frac{35+3}{5}+\frac{4\times 12+1}{12}+\frac{1\times 24+1}{24}+6+\frac{1}{18}
Multiply 7 and 5 to get 35.
\frac{38}{5}+\frac{4\times 12+1}{12}+\frac{1\times 24+1}{24}+6+\frac{1}{18}
Add 35 and 3 to get 38.
\frac{38}{5}+\frac{48+1}{12}+\frac{1\times 24+1}{24}+6+\frac{1}{18}
Multiply 4 and 12 to get 48.
\frac{38}{5}+\frac{49}{12}+\frac{1\times 24+1}{24}+6+\frac{1}{18}
Add 48 and 1 to get 49.
\frac{456}{60}+\frac{245}{60}+\frac{1\times 24+1}{24}+6+\frac{1}{18}
Least common multiple of 5 and 12 is 60. Convert \frac{38}{5} and \frac{49}{12} to fractions with denominator 60.
\frac{456+245}{60}+\frac{1\times 24+1}{24}+6+\frac{1}{18}
Since \frac{456}{60} and \frac{245}{60} have the same denominator, add them by adding their numerators.
\frac{701}{60}+\frac{1\times 24+1}{24}+6+\frac{1}{18}
Add 456 and 245 to get 701.
\frac{701}{60}+\frac{24+1}{24}+6+\frac{1}{18}
Multiply 1 and 24 to get 24.
\frac{701}{60}+\frac{25}{24}+6+\frac{1}{18}
Add 24 and 1 to get 25.
\frac{1402}{120}+\frac{125}{120}+6+\frac{1}{18}
Least common multiple of 60 and 24 is 120. Convert \frac{701}{60} and \frac{25}{24} to fractions with denominator 120.
\frac{1402+125}{120}+6+\frac{1}{18}
Since \frac{1402}{120} and \frac{125}{120} have the same denominator, add them by adding their numerators.
\frac{1527}{120}+6+\frac{1}{18}
Add 1402 and 125 to get 1527.
\frac{509}{40}+6+\frac{1}{18}
Reduce the fraction \frac{1527}{120} to lowest terms by extracting and canceling out 3.
\frac{509}{40}+\frac{240}{40}+\frac{1}{18}
Convert 6 to fraction \frac{240}{40}.
\frac{509+240}{40}+\frac{1}{18}
Since \frac{509}{40} and \frac{240}{40} have the same denominator, add them by adding their numerators.
\frac{749}{40}+\frac{1}{18}
Add 509 and 240 to get 749.
\frac{6741}{360}+\frac{20}{360}
Least common multiple of 40 and 18 is 360. Convert \frac{749}{40} and \frac{1}{18} to fractions with denominator 360.
\frac{6741+20}{360}
Since \frac{6741}{360} and \frac{20}{360} have the same denominator, add them by adding their numerators.
\frac{6761}{360}
Add 6741 and 20 to get 6761.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}