Evaluate
16b+25
Expand
16b+25
Share
Copied to clipboard
20+4b-\left(7-12b-12\right)
Add 7 and 13 to get 20.
20+4b-\left(-5-12b\right)
Subtract 12 from 7 to get -5.
20+4b-\left(-5\right)-\left(-12b\right)
To find the opposite of -5-12b, find the opposite of each term.
20+4b+5-\left(-12b\right)
The opposite of -5 is 5.
20+4b+5+12b
The opposite of -12b is 12b.
25+4b+12b
Add 20 and 5 to get 25.
25+16b
Combine 4b and 12b to get 16b.
20+4b-\left(7-12b-12\right)
Add 7 and 13 to get 20.
20+4b-\left(-5-12b\right)
Subtract 12 from 7 to get -5.
20+4b-\left(-5\right)-\left(-12b\right)
To find the opposite of -5-12b, find the opposite of each term.
20+4b+5-\left(-12b\right)
The opposite of -5 is 5.
20+4b+5+12b
The opposite of -12b is 12b.
25+4b+12b
Add 20 and 5 to get 25.
25+16b
Combine 4b and 12b to get 16b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}