Evaluate
38-20\sqrt{3}\approx 3.358983849
Share
Copied to clipboard
\left(7+\sqrt{3}\right)\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)+2^{2}-3+\sqrt{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
\left(7+\sqrt{3}\right)\left(4-4\sqrt{3}+3\right)+2^{2}-3+\sqrt{3}
The square of \sqrt{3} is 3.
\left(7+\sqrt{3}\right)\left(7-4\sqrt{3}\right)+2^{2}-3+\sqrt{3}
Add 4 and 3 to get 7.
49-21\sqrt{3}-4\left(\sqrt{3}\right)^{2}+2^{2}-3+\sqrt{3}
Use the distributive property to multiply 7+\sqrt{3} by 7-4\sqrt{3} and combine like terms.
49-21\sqrt{3}-4\times 3+2^{2}-3+\sqrt{3}
The square of \sqrt{3} is 3.
49-21\sqrt{3}-12+2^{2}-3+\sqrt{3}
Multiply -4 and 3 to get -12.
37-21\sqrt{3}+2^{2}-3+\sqrt{3}
Subtract 12 from 49 to get 37.
37-21\sqrt{3}+4-3+\sqrt{3}
Calculate 2 to the power of 2 and get 4.
41-21\sqrt{3}-3+\sqrt{3}
Add 37 and 4 to get 41.
38-21\sqrt{3}+\sqrt{3}
Subtract 3 from 41 to get 38.
38-20\sqrt{3}
Combine -21\sqrt{3} and \sqrt{3} to get -20\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}