( 6000 x 10 ^ { - 6 } + 0,3 x 0,5 ) = 0,156
Solve for x
x=26-25x_{0}
Solve for x_0
x_{0}=\frac{26-x}{25}
Graph
Share
Copied to clipboard
6000x\times \frac{1}{1000000}+0,3x_{0}\times 0,5=0,156
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{3}{500}x+0,3x_{0}\times 0,5=0,156
Multiply 6000 and \frac{1}{1000000} to get \frac{3}{500}.
\frac{3}{500}x+0,15x_{0}=0,156
Multiply 0,3 and 0,5 to get 0,15.
\frac{3}{500}x=0,156-0,15x_{0}
Subtract 0,15x_{0} from both sides.
\frac{3}{500}x=-\frac{3x_{0}}{20}+0,156
The equation is in standard form.
\frac{\frac{3}{500}x}{\frac{3}{500}}=\frac{-\frac{3x_{0}}{20}+0,156}{\frac{3}{500}}
Divide both sides of the equation by \frac{3}{500}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{3x_{0}}{20}+0,156}{\frac{3}{500}}
Dividing by \frac{3}{500} undoes the multiplication by \frac{3}{500}.
x=26-25x_{0}
Divide 0,156-\frac{3x_{0}}{20} by \frac{3}{500} by multiplying 0,156-\frac{3x_{0}}{20} by the reciprocal of \frac{3}{500}.
6000x\times \frac{1}{1000000}+0,3x_{0}\times 0,5=0,156
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{3}{500}x+0,3x_{0}\times 0,5=0,156
Multiply 6000 and \frac{1}{1000000} to get \frac{3}{500}.
\frac{3}{500}x+0,15x_{0}=0,156
Multiply 0,3 and 0,5 to get 0,15.
0,15x_{0}=0,156-\frac{3}{500}x
Subtract \frac{3}{500}x from both sides.
0,15x_{0}=-\frac{3x}{500}+0,156
The equation is in standard form.
\frac{0,15x_{0}}{0,15}=\frac{-\frac{3x}{500}+\frac{39}{250}}{0,15}
Divide both sides of the equation by 0,15, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{0}=\frac{-\frac{3x}{500}+\frac{39}{250}}{0,15}
Dividing by 0,15 undoes the multiplication by 0,15.
x_{0}=\frac{26-x}{25}
Divide \frac{39}{250}-\frac{3x}{500} by 0,15 by multiplying \frac{39}{250}-\frac{3x}{500} by the reciprocal of 0,15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}