Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
x = \frac{155}{6} = 25\frac{5}{6} \approx 25.833333333
Graph
Share
Copied to clipboard
2400-340x+12x^{2}=1625
Use the distributive property to multiply 60-4x by 40-3x and combine like terms.
2400-340x+12x^{2}-1625=0
Subtract 1625 from both sides.
775-340x+12x^{2}=0
Subtract 1625 from 2400 to get 775.
12x^{2}-340x+775=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-340\right)±\sqrt{\left(-340\right)^{2}-4\times 12\times 775}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -340 for b, and 775 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-340\right)±\sqrt{115600-4\times 12\times 775}}{2\times 12}
Square -340.
x=\frac{-\left(-340\right)±\sqrt{115600-48\times 775}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-340\right)±\sqrt{115600-37200}}{2\times 12}
Multiply -48 times 775.
x=\frac{-\left(-340\right)±\sqrt{78400}}{2\times 12}
Add 115600 to -37200.
x=\frac{-\left(-340\right)±280}{2\times 12}
Take the square root of 78400.
x=\frac{340±280}{2\times 12}
The opposite of -340 is 340.
x=\frac{340±280}{24}
Multiply 2 times 12.
x=\frac{620}{24}
Now solve the equation x=\frac{340±280}{24} when ± is plus. Add 340 to 280.
x=\frac{155}{6}
Reduce the fraction \frac{620}{24} to lowest terms by extracting and canceling out 4.
x=\frac{60}{24}
Now solve the equation x=\frac{340±280}{24} when ± is minus. Subtract 280 from 340.
x=\frac{5}{2}
Reduce the fraction \frac{60}{24} to lowest terms by extracting and canceling out 12.
x=\frac{155}{6} x=\frac{5}{2}
The equation is now solved.
2400-340x+12x^{2}=1625
Use the distributive property to multiply 60-4x by 40-3x and combine like terms.
-340x+12x^{2}=1625-2400
Subtract 2400 from both sides.
-340x+12x^{2}=-775
Subtract 2400 from 1625 to get -775.
12x^{2}-340x=-775
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}-340x}{12}=-\frac{775}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{340}{12}\right)x=-\frac{775}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{85}{3}x=-\frac{775}{12}
Reduce the fraction \frac{-340}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{85}{3}x+\left(-\frac{85}{6}\right)^{2}=-\frac{775}{12}+\left(-\frac{85}{6}\right)^{2}
Divide -\frac{85}{3}, the coefficient of the x term, by 2 to get -\frac{85}{6}. Then add the square of -\frac{85}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{85}{3}x+\frac{7225}{36}=-\frac{775}{12}+\frac{7225}{36}
Square -\frac{85}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{85}{3}x+\frac{7225}{36}=\frac{1225}{9}
Add -\frac{775}{12} to \frac{7225}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{85}{6}\right)^{2}=\frac{1225}{9}
Factor x^{2}-\frac{85}{3}x+\frac{7225}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{6}\right)^{2}}=\sqrt{\frac{1225}{9}}
Take the square root of both sides of the equation.
x-\frac{85}{6}=\frac{35}{3} x-\frac{85}{6}=-\frac{35}{3}
Simplify.
x=\frac{155}{6} x=\frac{5}{2}
Add \frac{85}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}