Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6000+100x=x\left(300+x\right)
Use the distributive property to multiply 60+x by 100.
6000+100x=300x+x^{2}
Use the distributive property to multiply x by 300+x.
6000+100x-300x=x^{2}
Subtract 300x from both sides.
6000-200x=x^{2}
Combine 100x and -300x to get -200x.
6000-200x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-200x+6000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-1\right)\times 6000}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -200 for b, and 6000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\left(-1\right)\times 6000}}{2\left(-1\right)}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000+4\times 6000}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-200\right)±\sqrt{40000+24000}}{2\left(-1\right)}
Multiply 4 times 6000.
x=\frac{-\left(-200\right)±\sqrt{64000}}{2\left(-1\right)}
Add 40000 to 24000.
x=\frac{-\left(-200\right)±80\sqrt{10}}{2\left(-1\right)}
Take the square root of 64000.
x=\frac{200±80\sqrt{10}}{2\left(-1\right)}
The opposite of -200 is 200.
x=\frac{200±80\sqrt{10}}{-2}
Multiply 2 times -1.
x=\frac{80\sqrt{10}+200}{-2}
Now solve the equation x=\frac{200±80\sqrt{10}}{-2} when ± is plus. Add 200 to 80\sqrt{10}.
x=-40\sqrt{10}-100
Divide 200+80\sqrt{10} by -2.
x=\frac{200-80\sqrt{10}}{-2}
Now solve the equation x=\frac{200±80\sqrt{10}}{-2} when ± is minus. Subtract 80\sqrt{10} from 200.
x=40\sqrt{10}-100
Divide 200-80\sqrt{10} by -2.
x=-40\sqrt{10}-100 x=40\sqrt{10}-100
The equation is now solved.
6000+100x=x\left(300+x\right)
Use the distributive property to multiply 60+x by 100.
6000+100x=300x+x^{2}
Use the distributive property to multiply x by 300+x.
6000+100x-300x=x^{2}
Subtract 300x from both sides.
6000-200x=x^{2}
Combine 100x and -300x to get -200x.
6000-200x-x^{2}=0
Subtract x^{2} from both sides.
-200x-x^{2}=-6000
Subtract 6000 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-200x=-6000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-200x}{-1}=-\frac{6000}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{200}{-1}\right)x=-\frac{6000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+200x=-\frac{6000}{-1}
Divide -200 by -1.
x^{2}+200x=6000
Divide -6000 by -1.
x^{2}+200x+100^{2}=6000+100^{2}
Divide 200, the coefficient of the x term, by 2 to get 100. Then add the square of 100 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+200x+10000=6000+10000
Square 100.
x^{2}+200x+10000=16000
Add 6000 to 10000.
\left(x+100\right)^{2}=16000
Factor x^{2}+200x+10000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+100\right)^{2}}=\sqrt{16000}
Take the square root of both sides of the equation.
x+100=40\sqrt{10} x+100=-40\sqrt{10}
Simplify.
x=40\sqrt{10}-100 x=-40\sqrt{10}-100
Subtract 100 from both sides of the equation.