Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3600+6720x+3136x^{2}=64+49+112x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(60+56x\right)^{2}.
3600+6720x+3136x^{2}=113+112x
Add 64 and 49 to get 113.
3600+6720x+3136x^{2}-113=112x
Subtract 113 from both sides.
3487+6720x+3136x^{2}=112x
Subtract 113 from 3600 to get 3487.
3487+6720x+3136x^{2}-112x=0
Subtract 112x from both sides.
3487+6608x+3136x^{2}=0
Combine 6720x and -112x to get 6608x.
3136x^{2}+6608x+3487=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6608±\sqrt{6608^{2}-4\times 3136\times 3487}}{2\times 3136}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3136 for a, 6608 for b, and 3487 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6608±\sqrt{43665664-4\times 3136\times 3487}}{2\times 3136}
Square 6608.
x=\frac{-6608±\sqrt{43665664-12544\times 3487}}{2\times 3136}
Multiply -4 times 3136.
x=\frac{-6608±\sqrt{43665664-43740928}}{2\times 3136}
Multiply -12544 times 3487.
x=\frac{-6608±\sqrt{-75264}}{2\times 3136}
Add 43665664 to -43740928.
x=\frac{-6608±112\sqrt{6}i}{2\times 3136}
Take the square root of -75264.
x=\frac{-6608±112\sqrt{6}i}{6272}
Multiply 2 times 3136.
x=\frac{-6608+112\sqrt{6}i}{6272}
Now solve the equation x=\frac{-6608±112\sqrt{6}i}{6272} when ± is plus. Add -6608 to 112i\sqrt{6}.
x=\frac{-59+\sqrt{6}i}{56}
Divide -6608+112i\sqrt{6} by 6272.
x=\frac{-112\sqrt{6}i-6608}{6272}
Now solve the equation x=\frac{-6608±112\sqrt{6}i}{6272} when ± is minus. Subtract 112i\sqrt{6} from -6608.
x=\frac{-\sqrt{6}i-59}{56}
Divide -6608-112i\sqrt{6} by 6272.
x=\frac{-59+\sqrt{6}i}{56} x=\frac{-\sqrt{6}i-59}{56}
The equation is now solved.
3600+6720x+3136x^{2}=64+49+112x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(60+56x\right)^{2}.
3600+6720x+3136x^{2}=113+112x
Add 64 and 49 to get 113.
3600+6720x+3136x^{2}-112x=113
Subtract 112x from both sides.
3600+6608x+3136x^{2}=113
Combine 6720x and -112x to get 6608x.
6608x+3136x^{2}=113-3600
Subtract 3600 from both sides.
6608x+3136x^{2}=-3487
Subtract 3600 from 113 to get -3487.
3136x^{2}+6608x=-3487
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3136x^{2}+6608x}{3136}=-\frac{3487}{3136}
Divide both sides by 3136.
x^{2}+\frac{6608}{3136}x=-\frac{3487}{3136}
Dividing by 3136 undoes the multiplication by 3136.
x^{2}+\frac{59}{28}x=-\frac{3487}{3136}
Reduce the fraction \frac{6608}{3136} to lowest terms by extracting and canceling out 112.
x^{2}+\frac{59}{28}x+\left(\frac{59}{56}\right)^{2}=-\frac{3487}{3136}+\left(\frac{59}{56}\right)^{2}
Divide \frac{59}{28}, the coefficient of the x term, by 2 to get \frac{59}{56}. Then add the square of \frac{59}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{59}{28}x+\frac{3481}{3136}=\frac{-3487+3481}{3136}
Square \frac{59}{56} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{59}{28}x+\frac{3481}{3136}=-\frac{3}{1568}
Add -\frac{3487}{3136} to \frac{3481}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{59}{56}\right)^{2}=-\frac{3}{1568}
Factor x^{2}+\frac{59}{28}x+\frac{3481}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{59}{56}\right)^{2}}=\sqrt{-\frac{3}{1568}}
Take the square root of both sides of the equation.
x+\frac{59}{56}=\frac{\sqrt{6}i}{56} x+\frac{59}{56}=-\frac{\sqrt{6}i}{56}
Simplify.
x=\frac{-59+\sqrt{6}i}{56} x=\frac{-\sqrt{6}i-59}{56}
Subtract \frac{59}{56} from both sides of the equation.