Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

11y^{2}+1-7y-2
Combine 6y^{2} and 5y^{2} to get 11y^{2}.
11y^{2}-1-7y
Subtract 2 from 1 to get -1.
factor(11y^{2}+1-7y-2)
Combine 6y^{2} and 5y^{2} to get 11y^{2}.
factor(11y^{2}-1-7y)
Subtract 2 from 1 to get -1.
11y^{2}-7y-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 11\left(-1\right)}}{2\times 11}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-7\right)±\sqrt{49-4\times 11\left(-1\right)}}{2\times 11}
Square -7.
y=\frac{-\left(-7\right)±\sqrt{49-44\left(-1\right)}}{2\times 11}
Multiply -4 times 11.
y=\frac{-\left(-7\right)±\sqrt{49+44}}{2\times 11}
Multiply -44 times -1.
y=\frac{-\left(-7\right)±\sqrt{93}}{2\times 11}
Add 49 to 44.
y=\frac{7±\sqrt{93}}{2\times 11}
The opposite of -7 is 7.
y=\frac{7±\sqrt{93}}{22}
Multiply 2 times 11.
y=\frac{\sqrt{93}+7}{22}
Now solve the equation y=\frac{7±\sqrt{93}}{22} when ± is plus. Add 7 to \sqrt{93}.
y=\frac{7-\sqrt{93}}{22}
Now solve the equation y=\frac{7±\sqrt{93}}{22} when ± is minus. Subtract \sqrt{93} from 7.
11y^{2}-7y-1=11\left(y-\frac{\sqrt{93}+7}{22}\right)\left(y-\frac{7-\sqrt{93}}{22}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+\sqrt{93}}{22} for x_{1} and \frac{7-\sqrt{93}}{22} for x_{2}.