Solve for x
x=-\frac{2}{3}\approx -0.666666667
x = -\frac{32}{3} = -10\frac{2}{3} \approx -10.666666667
Graph
Share
Copied to clipboard
18x^{2}-3x-10-\left(9x+6\right)\left(3x+9\right)=0
Use the distributive property to multiply 6x-5 by 3x+2 and combine like terms.
18x^{2}-3x-10-\left(27x^{2}+99x+54\right)=0
Use the distributive property to multiply 9x+6 by 3x+9 and combine like terms.
18x^{2}-3x-10-27x^{2}-99x-54=0
To find the opposite of 27x^{2}+99x+54, find the opposite of each term.
-9x^{2}-3x-10-99x-54=0
Combine 18x^{2} and -27x^{2} to get -9x^{2}.
-9x^{2}-102x-10-54=0
Combine -3x and -99x to get -102x.
-9x^{2}-102x-64=0
Subtract 54 from -10 to get -64.
a+b=-102 ab=-9\left(-64\right)=576
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx-64. To find a and b, set up a system to be solved.
-1,-576 -2,-288 -3,-192 -4,-144 -6,-96 -8,-72 -9,-64 -12,-48 -16,-36 -18,-32 -24,-24
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 576.
-1-576=-577 -2-288=-290 -3-192=-195 -4-144=-148 -6-96=-102 -8-72=-80 -9-64=-73 -12-48=-60 -16-36=-52 -18-32=-50 -24-24=-48
Calculate the sum for each pair.
a=-6 b=-96
The solution is the pair that gives sum -102.
\left(-9x^{2}-6x\right)+\left(-96x-64\right)
Rewrite -9x^{2}-102x-64 as \left(-9x^{2}-6x\right)+\left(-96x-64\right).
3x\left(-3x-2\right)+32\left(-3x-2\right)
Factor out 3x in the first and 32 in the second group.
\left(-3x-2\right)\left(3x+32\right)
Factor out common term -3x-2 by using distributive property.
x=-\frac{2}{3} x=-\frac{32}{3}
To find equation solutions, solve -3x-2=0 and 3x+32=0.
18x^{2}-3x-10-\left(9x+6\right)\left(3x+9\right)=0
Use the distributive property to multiply 6x-5 by 3x+2 and combine like terms.
18x^{2}-3x-10-\left(27x^{2}+99x+54\right)=0
Use the distributive property to multiply 9x+6 by 3x+9 and combine like terms.
18x^{2}-3x-10-27x^{2}-99x-54=0
To find the opposite of 27x^{2}+99x+54, find the opposite of each term.
-9x^{2}-3x-10-99x-54=0
Combine 18x^{2} and -27x^{2} to get -9x^{2}.
-9x^{2}-102x-10-54=0
Combine -3x and -99x to get -102x.
-9x^{2}-102x-64=0
Subtract 54 from -10 to get -64.
x=\frac{-\left(-102\right)±\sqrt{\left(-102\right)^{2}-4\left(-9\right)\left(-64\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -102 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-102\right)±\sqrt{10404-4\left(-9\right)\left(-64\right)}}{2\left(-9\right)}
Square -102.
x=\frac{-\left(-102\right)±\sqrt{10404+36\left(-64\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-102\right)±\sqrt{10404-2304}}{2\left(-9\right)}
Multiply 36 times -64.
x=\frac{-\left(-102\right)±\sqrt{8100}}{2\left(-9\right)}
Add 10404 to -2304.
x=\frac{-\left(-102\right)±90}{2\left(-9\right)}
Take the square root of 8100.
x=\frac{102±90}{2\left(-9\right)}
The opposite of -102 is 102.
x=\frac{102±90}{-18}
Multiply 2 times -9.
x=\frac{192}{-18}
Now solve the equation x=\frac{102±90}{-18} when ± is plus. Add 102 to 90.
x=-\frac{32}{3}
Reduce the fraction \frac{192}{-18} to lowest terms by extracting and canceling out 6.
x=\frac{12}{-18}
Now solve the equation x=\frac{102±90}{-18} when ± is minus. Subtract 90 from 102.
x=-\frac{2}{3}
Reduce the fraction \frac{12}{-18} to lowest terms by extracting and canceling out 6.
x=-\frac{32}{3} x=-\frac{2}{3}
The equation is now solved.
18x^{2}-3x-10-\left(9x+6\right)\left(3x+9\right)=0
Use the distributive property to multiply 6x-5 by 3x+2 and combine like terms.
18x^{2}-3x-10-\left(27x^{2}+99x+54\right)=0
Use the distributive property to multiply 9x+6 by 3x+9 and combine like terms.
18x^{2}-3x-10-27x^{2}-99x-54=0
To find the opposite of 27x^{2}+99x+54, find the opposite of each term.
-9x^{2}-3x-10-99x-54=0
Combine 18x^{2} and -27x^{2} to get -9x^{2}.
-9x^{2}-102x-10-54=0
Combine -3x and -99x to get -102x.
-9x^{2}-102x-64=0
Subtract 54 from -10 to get -64.
-9x^{2}-102x=64
Add 64 to both sides. Anything plus zero gives itself.
\frac{-9x^{2}-102x}{-9}=\frac{64}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{102}{-9}\right)x=\frac{64}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{34}{3}x=\frac{64}{-9}
Reduce the fraction \frac{-102}{-9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{34}{3}x=-\frac{64}{9}
Divide 64 by -9.
x^{2}+\frac{34}{3}x+\left(\frac{17}{3}\right)^{2}=-\frac{64}{9}+\left(\frac{17}{3}\right)^{2}
Divide \frac{34}{3}, the coefficient of the x term, by 2 to get \frac{17}{3}. Then add the square of \frac{17}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{34}{3}x+\frac{289}{9}=\frac{-64+289}{9}
Square \frac{17}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{34}{3}x+\frac{289}{9}=25
Add -\frac{64}{9} to \frac{289}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{17}{3}\right)^{2}=25
Factor x^{2}+\frac{34}{3}x+\frac{289}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{3}\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x+\frac{17}{3}=5 x+\frac{17}{3}=-5
Simplify.
x=-\frac{2}{3} x=-\frac{32}{3}
Subtract \frac{17}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}