( 6 x - 25 y - 23 = - 16
Solve for x
x=\frac{25y+7}{6}
Solve for y
y=\frac{6x-7}{25}
Graph
Share
Copied to clipboard
6x-23=-16+25y
Add 25y to both sides.
6x=-16+25y+23
Add 23 to both sides.
6x=7+25y
Add -16 and 23 to get 7.
6x=25y+7
The equation is in standard form.
\frac{6x}{6}=\frac{25y+7}{6}
Divide both sides by 6.
x=\frac{25y+7}{6}
Dividing by 6 undoes the multiplication by 6.
-25y-23=-16-6x
Subtract 6x from both sides.
-25y=-16-6x+23
Add 23 to both sides.
-25y=7-6x
Add -16 and 23 to get 7.
\frac{-25y}{-25}=\frac{7-6x}{-25}
Divide both sides by -25.
y=\frac{7-6x}{-25}
Dividing by -25 undoes the multiplication by -25.
y=\frac{6x-7}{25}
Divide 7-6x by -25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}